def test_prod_zero(self):
     data = [0,4]
     result = prod(data)
     self.assertEqual(result, 0)
 def test_prod_value_missing(self):
     data = [3]
     result = prod(data)
     self.assertEqual(result, 3)
 def test_prod_neg(self):
     data = [-3,-20]
     result = prod(data)
     self.assertEqual(result, 60)
 def test_prod_pos_neg(self):
     data = [-3,20]
     result = prod(data)
     self.assertEqual(result, -60)
 def test_prod_pos(self):
     data = [3,20]
     result = prod(data)
     self.assertEqual(result, 60)
 def test_prod_largenums(self):
     data = [383821,494329]
     result = prod(data)
     self.assertEqual(result, 189733851109)
 def test_prod_none(self):
     data = []
     result = prod(data)
     self.assertEqual(result, 1)
Пример #8
0
def det(A, n):
    """

		Using Gaussian elimination and gcd. For integers only!

		>>> det( [ [ 4 , 1 ] , [ 1 , 2 ] ] , 2 )
		7

		>>> det( [ [ -2 , 2 , -3 ] , [ -1 , 1 , 3 ] , [ 2 , 0 , -1 ] ] , 3 )
		18

		>>> det( [ [ -1 , 1 , 3 ] , [ -2 , 2 , -3 ] , [ 2 , 0 , -1 ] ] , 3 )
		-18

	"""

    d = 1

    for i in range(n - 1):

        # find first non zero row

        if A[i][i] == 0:

            j = i + 1

            while j < n:

                if A[j][i] != 0: break

                j += 1

            if j == n: return 0

            # make it the ith row

            A[i], A[j] = A[j], A[i]

            d = -d

        for j in range(i + 1, n):

            a = A[i][i]
            b = A[j][i]

            c = gcd(a, b)

            a //= c
            b //= c

            # we want to cancel A[j][i]

            # assert  a * A[j][i] == b * A[i][i]

            A[j][i] = 0

            # so we multiply both rows so that
            #
            #     A[i][i] = A[j][i] = lcm( A[i][i] , A[j][i] )
            #
            # and we remove the ith row from the jth row

            for k in range(i + 1, n):

                A[j][k] = a * A[j][k] - b * A[i][k]

            d *= a

    return prod(A[i][i] for i in range(n)) // d
Пример #9
0
def det ( A , n ) :

	"""

		Using Gaussian elimination and gcd. For integers only!

		>>> det( [ [ 4 , 1 ] , [ 1 , 2 ] ] , 2 )
		7

		>>> det( [ [ -2 , 2 , -3 ] , [ -1 , 1 , 3 ] , [ 2 , 0 , -1 ] ] , 3 )
		18

		>>> det( [ [ -1 , 1 , 3 ] , [ -2 , 2 , -3 ] , [ 2 , 0 , -1 ] ] , 3 )
		-18

	"""

	d = 1

	for i in range ( n - 1 ) :

		# find first non zero row

		if A[i][i] == 0 :

			j = i + 1

			while j < n :

				if A[j][i] != 0 : break

				j += 1

			if j == n : return 0

			# make it the ith row

			A[i] , A[j] = A[j] , A[i]

			d = -d

		for j in range ( i + 1 , n ) :

			a = A[i][i]
			b = A[j][i]

			c = gcd( a , b )

			a //= c
			b //= c

			# we want to cancel A[j][i]

			# assert  a * A[j][i] == b * A[i][i]

			A[j][i] = 0

			# so we multiply both rows so that
			#
			#     A[i][i] = A[j][i] = lcm( A[i][i] , A[j][i] )
			#
			# and we remove the ith row from the jth row

			for k in range ( i + 1 , n ) :

				A[j][k] = a * A[j][k] - b * A[i][k]

			d *= a

	return prod( A[i][i] for i in range( n ) ) // d