Пример #1
0
from collections import Mapping
from numbers import Integral

import numpy as np

from distarray.externals import six
from distarray.externals.six.moves import zip

from distarray.local.mpiutils import MPI
from distarray.utils import _raise_nie
from distarray.local import format, maps
from distarray.local.error import InvalidDimensionError, IncompatibleArrayError


# Register numpy integer types with numbers.Integral ABC.
Integral.register(np.signedinteger)
Integral.register(np.unsignedinteger)


def _sanitize_indices(indices):
    if isinstance(indices, Integral) or isinstance(indices, slice):
        return (indices,)
    elif all(isinstance(i, Integral) or isinstance(i, slice) for i in indices):
        return indices
    else:
        raise TypeError("Index must be a sequence of ints and slices")


class GlobalIndex(object):
    """Object which provides access to global indexing on
    LocalArrays.
Пример #2
0
import operator
from itertools import product
from functools import reduce
from numbers import Integral
from collections import Sequence, Mapping

import numpy

from distarray import utils
from distarray.externals.six import next
from distarray.externals.six.moves import map, zip


# Register numpy integer types with numbers.Integral ABC.
Integral.register(numpy.signedinteger)
Integral.register(numpy.unsignedinteger)


class InvalidGridShapeError(Exception):
    """ Exception class when the grid shape is incompatible with the distribution or communicator. """
    pass


class GridShapeError(Exception):
    """ Exception class when it is not possible to distribute the processes over the number of dimensions. """
    pass


def check_grid_shape_preconditions(shape, dist, comm_size):
    """
Пример #3
0
def get_vmc_version():
    import os
    from subprocess import check_output, CalledProcessError

    original_directory = os.getcwd()
    try:
        os.chdir(os.path.dirname(__file__))
        try:
            return check_output(["git", "describe", "--always"])
        except CalledProcessError:
            return None
    finally:
        os.chdir(original_directory)

import six
if six.PY3:
    import numpy
    from collections import Hashable
    from numbers import Integral

    # FIXME: track down why we are passing around these int64's anyway
    if not isinstance(numpy.int64, Integral):
        Integral.register(numpy.int64)
    if not isinstance(numpy.int64, Hashable):
        Hashable.register(numpy.int64)

    # FIXME: numpy.ndarray is Hashable in python2 but not python3.  Honestly, I
    # don't think it should be in either...
    Hashable.register(numpy.ndarray)
Пример #4
0
from matplotlib import cbook
from matplotlib.axes import Axes
from matplotlib.backend_bases import RendererBase
from matplotlib.collections import (LineCollection, PatchCollection,
                                    PathCollection)
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.figure import Figure
from matplotlib.image import AxesImage
from matplotlib.lines import Line2D
from matplotlib.patches import Patch, PathPatch, Polygon, Rectangle
from matplotlib.quiver import Barbs, Quiver
from matplotlib.text import Text
from matplotlib.transforms import Affine2D
import numpy as np

Integral.register(np.integer)  # numpy<1.9 backcompat.
PATCH_PICKRADIUS = 5  # FIXME Patches do not provide `pickradius`.


def _register_scatter():
    """
    Patch `PathCollection` and `scatter` to register their return values.

    This registration allows us to distinguish `PathCollection`s created by
    `Axes.scatter`, which should use point-like picking, from others, which
    should use path-like picking.  The former is more common, so we store the
    latter instead; this also lets us guess the type better if this module is
    imported late.
    """
    @functools.wraps(PathCollection.__init__)
    def __init__(self, *args, **kwargs):
Пример #5
0
from matplotlib import cbook
from matplotlib.axes import Axes
from matplotlib.collections import LineCollection, PathCollection
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.image import AxesImage
from matplotlib.lines import Line2D
from matplotlib.patches import Patch, PathPatch, Polygon, Rectangle
from matplotlib.path import Path as MPath
from matplotlib.quiver import Barbs, Quiver
from matplotlib.text import Text
from matplotlib.transforms import Affine2D
import numpy as np


Integral.register(np.integer)  # Back-compatibility for numpy 1.7, 1.8.


def _register_scatter():
    """Patch `PathCollection` and `scatter` to register their return values.

    This registration allows us to distinguish `PathCollection`s created by
    `Axes.scatter`, which should use point-like picking, from others, which
    should use path-like picking.  The former is more common, so we store the
    latter instead; this also lets us guess the type better if this module is
    imported late.
    """

    @functools.wraps(PathCollection.__init__)
    def __init__(self, *args, **kwargs):
        _nonscatter_pathcollections.add(self)
Пример #6
0
from __future__ import division

import operator
from itertools import product
from functools import reduce
from numbers import Integral
from collections import Sequence, Mapping

import numpy

from distarray import utils
from distarray.externals.six import next
from distarray.externals.six.moves import map, zip

# Register numpy integer types with numbers.Integral ABC.
Integral.register(numpy.signedinteger)
Integral.register(numpy.unsignedinteger)


class InvalidGridShapeError(Exception):
    """ Exception class when the grid shape is incompatible with the distribution or communicator. """
    pass


class GridShapeError(Exception):
    """ Exception class when it is not possible to distribute the processes over the number of dimensions. """
    pass


def check_grid_shape_preconditions(shape, dist, comm_size):
    """
Пример #7
0
        assert isinstance(i, int)
        self.i = i

    def __int__(self):
        """int(self)"""
        return self.i

    __index__ = __int__

    def __eq__(self, i):
        """self == i"""
        return self.i == i


# noinspection PyUnresolvedReferences
Integral.register(IntWrapper)


class FloatWrapper:

    def __init__(self, f):
        assert isinstance(f, float)
        self.f = f

    def __float__(self):
        """float(self)"""
        return self.f

    def __eq__(self, f):
        """self == f"""
        return self.f == f
Пример #8
0
 def test_integral_is_integer(self):
     self.assertTrue(Integral.is_integer(-1))
     self.assertTrue(Integral.is_integer(0))
     self.assertTrue(Integral.is_integer(1))
     self.assertTrue(Integral.is_integer(1729))
Пример #9
0
from __future__ import division

import operator
from functools import reduce
from numbers import Integral

import numpy as np
from distarray.externals.six.moves import range, zip, reduce

from distarray.localapi import construct
from distarray.metadata_utils import (make_grid_shape, normalize_grid_shape,
                                      normalize_dist, distribute_indices,
                                      sanitize_indices)

# Register numpy integer types with numbers.Integral ABC.
Integral.register(np.signedinteger)
Integral.register(np.unsignedinteger)


class Distribution(object):
    """Multi-dimensional Map class.

    Manages one or more one-dimensional map classes.
    """
    def __init__(self, comm, dim_data):
        """Create a Distribution from a `dim_data` structure."""
        self._maps = tuple(
            map_from_dim_dict(dim_dict) for dim_dict in dim_data)
        self.base_comm = construct.init_base_comm(comm)
        self.comm = construct.init_comm(self.base_comm, self.grid_shape)