def test_multiple_runs(): "test running multiple models through multiple tournaments" d = testing.play_data() models = [nx.logistic(), nx.fifty()] with testing.HiddenPrints(): p = nx.production(models, d, 'bernie') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d, 2) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d), 'ken') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.backtest(models, d) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d)) ok_(p.shape[1] == 10, 'wrong number of tournaments') p = nx.production(models, d, [1, 5]) ok_(p.shape[1] == 4, 'wrong number of tournaments') ok_(p.tournaments() == ['bernie', 'charles'], 'wrong tournaments') p = nx.backtest(models, d, ['charles', 'bernie']) ok_(p.shape[1] == 4, 'wrong number of tournaments') ok_(p.tournaments() == ['bernie', 'charles'], 'wrong tournaments') p = nx.run(models, nx.ValidationSplitter(d), ['ken']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['ken'], 'wrong tournaments')
def test_multiple_runs(): """test running multiple models through multiple tournaments""" d = testing.play_data() models = [nx.linear(), nx.fifty()] with testing.HiddenPrints(): p = nx.production(models, d, 'kazutsugi') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d, 8) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d), 'kazutsugi') ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.backtest(models, d) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.run(models, nx.ValidationSplitter(d)) ok_(p.shape[1] == 2, 'wrong number of tournaments') p = nx.production(models, d, [8]) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments') p = nx.backtest(models, d, ['kazutsugi']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments') p = nx.run(models, nx.ValidationSplitter(d), ['kazutsugi']) ok_(p.shape[1] == 2, 'wrong number of tournaments') ok_(p.tournaments() == ['kazutsugi'], 'wrong tournaments')
def test_run(): "Make sure run runs" d = testing.play_data() models = [nx.logistic(), fifty()] splitters = [nx.TournamentSplitter(d), nx.ValidationSplitter(d), nx.CheatSplitter(d), nx.CVSplitter(d, kfold=2), nx.SplitSplitter(d, fit_fraction=0.5)] for model in models: for splitter in splitters: nx.run(model, splitter, verbosity=0)
def test_splitter_overlap(): "prediction data should not overlap" d = nx.play_data() splitters = [ nx.TournamentSplitter(d), nx.ValidationSplitter(d), nx.CheatSplitter(d), nx.CVSplitter(d), nx.IgnoreEraCVSplitter(d), nx.SplitSplitter(d, fit_fraction=0.5) ] for splitter in splitters: predict_ids = [] for dfit, dpredict in splitter: predict_ids.extend(dpredict.ids.tolist()) ok_(len(predict_ids) == len(set(predict_ids)), "ids overlap")
def test_run(): "Make sure run runs" d = testing.play_data() models = [nx.linear(), nx.fifty()] splitters = [nx.TournamentSplitter(d), nx.ValidationSplitter(d), nx.CheatSplitter(d), nx.CVSplitter(d, kfold=2), nx.SplitSplitter(d, fit_fraction=0.5)] for model in models: for splitter in splitters: p = nx.run(model, splitter, tournament=None, verbosity=0) ok_(p.shape[1] == 1, 'wrong number of tournaments') ok_(p.tournaments() == nx.tournament_all(), 'wrong tournaments') assert_raises(ValueError, nx.run, None, nx.TournamentSplitter(d)) assert_raises(ValueError, nx.run, nx.fifty(), nx.TournamentSplitter(d), {})
def test_splitter_reset(): "splitter reset should not change results" d = nx.play_data() splitters = [ nx.TournamentSplitter(d), nx.ValidationSplitter(d), nx.CheatSplitter(d), nx.CVSplitter(d), nx.IgnoreEraCVSplitter(d), nx.SplitSplitter(d, fit_fraction=0.5) ] for splitter in splitters: ftups = [[], []] ptups = [[], []] for i in range(2): for dfit, dpredict in splitter: ftups[i].append(dfit) ptups[i].append(dpredict) splitter.reset() ok_(ftups[0] == ftups[1], "splitter reset changed fit split") ok_(ptups[0] == ptups[1], "splitter reset changed predict split")