def __getitem__(self, key): try: size = [] typ = int for k in range(len(key)): step = key[k].step start = key[k].start if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size.append(int(abs(step))) typ = float else: size.append( int(math.ceil((key[k].stop - start)/(step*1.0)))) if (isinstance(step, float) or isinstance(start, float) or isinstance(key[k].stop, float)): typ = float if self.sparse: nn = [_nx.arange(_x, dtype=_t) for _x, _t in zip(size, (typ,)*len(size))] else: nn = _nx.indices(size, typ) for k in range(len(size)): step = key[k].step start = key[k].start if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): step = int(abs(step)) if step != 1: step = (key[k].stop - start)/float(step-1) nn[k] = (nn[k]*step+start) if self.sparse: slobj = [_nx.newaxis]*len(size) for k in range(len(size)): slobj[k] = slice(None, None) nn[k] = nn[k][slobj] slobj[k] = _nx.newaxis return nn except (IndexError, TypeError): step = key.step stop = key.stop start = key.start if start is None: start = 0 if isinstance(step, complex): step = abs(step) length = int(step) if step != 1: step = (key.stop-start)/float(step-1) stop = key.stop + step return _nx.arange(0, length, 1, float)*step + start else: return _nx.arange(start, stop, step)
def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ tri_ = ~tri(n, m, k=k - 1, dtype=bool) return tuple( broadcast_to(inds, tri_.shape)[tri_] for inds in indices(tri_.shape, sparse=True))
def __getitem__(self, key): try: size = [] typ = int for k in range(len(key)): step = key[k].step start = key[k].start if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size.append(int(abs(step))) typ = float else: size.append( int(math.ceil((key[k].stop - start) / (step * 1.0)))) if (isinstance(step, float) or isinstance(start, float) or isinstance(key[k].stop, float)): typ = float if self.sparse: nn = [ _nx.arange(_x, dtype=_t) for _x, _t in zip(size, (typ, ) * len(size)) ] else: nn = _nx.indices(size, typ) for k in range(len(size)): step = key[k].step start = key[k].start if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): step = int(abs(step)) if step != 1: step = (key[k].stop - start) / float(step - 1) nn[k] = (nn[k] * step + start) if self.sparse: slobj = [_nx.newaxis] * len(size) for k in range(len(size)): slobj[k] = slice(None, None) nn[k] = nn[k][slobj] slobj[k] = _nx.newaxis return nn except (IndexError, TypeError): step = key.step stop = key.stop start = key.start if start is None: start = 0 if isinstance(step, complex): step = abs(step) length = int(step) if step != 1: step = (key.stop - start) / float(step - 1) stop = key.stop + step return _nx.arange(0, length, 1, float) * step + start else: return _nx.arange(start, stop, step)