def test_fromstring(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') f = as_symbol('f') s = as_string('"ABC"') t = as_string('"123"') a = as_array((x, y)) assert fromstring('x') == x assert fromstring('+ x') == x assert fromstring('- x') == -x assert fromstring('x + y') == x + y assert fromstring('x + 1') == x + 1 assert fromstring('x * y') == x * y assert fromstring('x * 2') == x * 2 assert fromstring('x / y') == x / y assert fromstring('x ** 2', language=Language.Python) == x**2 assert fromstring('x ** 2 ** 3', language=Language.Python) == x**2**3 assert fromstring('(x + y) * z') == (x + y) * z assert fromstring('f(x)') == f(x) assert fromstring('f(x,y)') == f(x, y) assert fromstring('f[x]') == f[x] assert fromstring('f[x][y]') == f[x][y] assert fromstring('"ABC"') == s assert normalize( fromstring('"ABC" // "123" ', language=Language.Fortran)) == s // t assert fromstring('f("ABC")') == f(s) assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND') assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)') assert fromstring('f((/x, y/))') == f(a) assert fromstring('(/(x+y)*z/)') == as_array(((x + y) * z, )) assert fromstring('123') == as_number(123) assert fromstring('123_2') == as_number(123, 2) assert fromstring('123_myintkind') == as_number(123, 'myintkind') assert fromstring('123.0') == as_number(123.0, 4) assert fromstring('123.0_4') == as_number(123.0, 4) assert fromstring('123.0_8') == as_number(123.0, 8) assert fromstring('123.0e0') == as_number(123.0, 4) assert fromstring('123.0d0') == as_number(123.0, 8) assert fromstring('123d0') == as_number(123.0, 8) assert fromstring('123e-0') == as_number(123.0, 4) assert fromstring('123d+0') == as_number(123.0, 8) assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind') assert fromstring('3E4') == as_number(30000.0, 4) assert fromstring('(1, 2)') == as_complex(1, 2) assert fromstring('(1e2, PI)') == as_complex(as_number(100.0), as_symbol('PI')) assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2))) assert fromstring('POINT(x, y=1)') == as_apply(as_symbol('POINT'), x, y=as_number(1)) assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(as_symbol('PERSON'), name=as_string('"John"'), age=as_number(50), shape=as_array((as_number(34), as_number(23))))) assert fromstring('x?y:z') == as_ternary(x, y, z) assert fromstring('*x') == as_deref(x) assert fromstring('**x') == as_deref(as_deref(x)) assert fromstring('&x') == as_ref(x) assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y) assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y) assert fromstring('*x * *y') == as_deref(x) * as_deref(y) assert fromstring('*x**y') == as_deref(x) * as_deref(y) assert fromstring('x == y') == as_eq(x, y) assert fromstring('x != y') == as_ne(x, y) assert fromstring('x < y') == as_lt(x, y) assert fromstring('x > y') == as_gt(x, y) assert fromstring('x <= y') == as_le(x, y) assert fromstring('x >= y') == as_ge(x, y) assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y) assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y) assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y) assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y) assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y) assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y)
def test_operations(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') assert x + x == Expr(Op.TERMS, {x: 2}) assert x - x == Expr(Op.INTEGER, (0, 4)) assert x + y == Expr(Op.TERMS, {x: 1, y: 1}) assert x - y == Expr(Op.TERMS, {x: 1, y: -1}) assert x * x == Expr(Op.FACTORS, {x: 2}) assert x * y == Expr(Op.FACTORS, {x: 1, y: 1}) assert +x == x assert -x == Expr(Op.TERMS, {x: -1}), repr(-x) assert 2 * x == Expr(Op.TERMS, {x: 2}) assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2}) assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) assert x**2 == Expr(Op.FACTORS, {x: 2}) assert (x + y)**2 == Expr( Op.TERMS, { Expr(Op.FACTORS, {x: 2}): 1, Expr(Op.FACTORS, {y: 2}): 1, Expr(Op.FACTORS, { x: 1, y: 1 }): 2 }) assert (x + y) * x == x**2 + x * y assert (x + y)**2 == x**2 + 2 * x * y + y**2 assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2 assert (x + y) * z == x * z + y * z assert z * (x + y) == x * z + y * z assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) assert (2 * x / 2) == x assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2)) assert (4 * x / 2) == 2 * x assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) assert (6 * x / 2) == 3 * x assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply( ArithOp.DIV, 5 * y, 4 * x) assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x, as_number(2)), ((15 * x / 6) / 5) assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) s = as_string('"ABC"') t = as_string('"123"') assert s // t == Expr(Op.STRING, ('"ABC123"', 1)) assert s // x == Expr(Op.CONCAT, (s, x)) assert x // s == Expr(Op.CONCAT, (x, s)) c = as_complex(1., 2.) assert -c == as_complex(-1., -2.) assert c + c == as_expr((1 + 2j) * 2) assert c * c == as_expr((1 + 2j)**2)
def test_sanity(self): x = as_symbol('x') y = as_symbol('y') z = as_symbol('z') assert x.op == Op.SYMBOL assert repr(x) == "Expr(Op.SYMBOL, 'x')" assert x == x assert x != y assert hash(x) is not None n = as_number(123) m = as_number(456) assert n.op == Op.INTEGER assert repr(n) == "Expr(Op.INTEGER, (123, 4))" assert n == n assert n != m assert hash(n) is not None fn = as_number(12.3) fm = as_number(45.6) assert fn.op == Op.REAL assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" assert fn == fn assert fn != fm assert hash(fn) is not None c = as_complex(1, 2) c2 = as_complex(3, 4) assert c.op == Op.COMPLEX assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," " Expr(Op.INTEGER, (2, 4))))") assert c == c assert c != c2 assert hash(c) is not None s = as_string("'123'") s2 = as_string('"ABC"') assert s.op == Op.STRING assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) assert s == s assert s != s2 a = as_array((n, m)) b = as_array((n, )) assert a.op == Op.ARRAY assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," " Expr(Op.INTEGER, (456, 4))))") assert a == a assert a != b t = as_terms(x) u = as_terms(y) assert t.op == Op.TERMS assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" assert t == t assert t != u assert hash(t) is not None v = as_factors(x) w = as_factors(y) assert v.op == Op.FACTORS assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" assert v == v assert w != v assert hash(v) is not None t = as_ternary(x, y, z) u = as_ternary(x, z, y) assert t.op == Op.TERNARY assert t == t assert t != u assert hash(t) is not None e = as_eq(x, y) f = as_lt(x, y) assert e.op == Op.RELATIONAL assert e == e assert e != f assert hash(e) is not None
def test_fromstring(self): x = as_symbol("x") y = as_symbol("y") z = as_symbol("z") f = as_symbol("f") s = as_string('"ABC"') t = as_string('"123"') a = as_array((x, y)) assert fromstring("x") == x assert fromstring("+ x") == x assert fromstring("- x") == -x assert fromstring("x + y") == x + y assert fromstring("x + 1") == x + 1 assert fromstring("x * y") == x * y assert fromstring("x * 2") == x * 2 assert fromstring("x / y") == x / y assert fromstring("x ** 2", language=Language.Python) == x**2 assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 assert fromstring("(x + y) * z") == (x + y) * z assert fromstring("f(x)") == f(x) assert fromstring("f(x,y)") == f(x, y) assert fromstring("f[x]") == f[x] assert fromstring("f[x][y]") == f[x][y] assert fromstring('"ABC"') == s assert (normalize( fromstring('"ABC" // "123" ', language=Language.Fortran)) == s // t) assert fromstring('f("ABC")') == f(s) assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") assert fromstring("f((/x, y/))") == f(a) assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) assert fromstring("123") == as_number(123) assert fromstring("123_2") == as_number(123, 2) assert fromstring("123_myintkind") == as_number(123, "myintkind") assert fromstring("123.0") == as_number(123.0, 4) assert fromstring("123.0_4") == as_number(123.0, 4) assert fromstring("123.0_8") == as_number(123.0, 8) assert fromstring("123.0e0") == as_number(123.0, 4) assert fromstring("123.0d0") == as_number(123.0, 8) assert fromstring("123d0") == as_number(123.0, 8) assert fromstring("123e-0") == as_number(123.0, 4) assert fromstring("123d+0") == as_number(123.0, 8) assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") assert fromstring("3E4") == as_number(30000.0, 4) assert fromstring("(1, 2)") == as_complex(1, 2) assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), as_symbol("PI")) assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), x, y=as_number(1)) assert fromstring( 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( as_symbol("PERSON"), name=as_string('"John"'), age=as_number(50), shape=as_array((as_number(34), as_number(23))), ) assert fromstring("x?y:z") == as_ternary(x, y, z) assert fromstring("*x") == as_deref(x) assert fromstring("**x") == as_deref(as_deref(x)) assert fromstring("&x") == as_ref(x) assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) assert fromstring("*x * *y") == as_deref(x) * as_deref(y) assert fromstring("*x**y") == as_deref(x) * as_deref(y) assert fromstring("x == y") == as_eq(x, y) assert fromstring("x != y") == as_ne(x, y) assert fromstring("x < y") == as_lt(x, y) assert fromstring("x > y") == as_gt(x, y) assert fromstring("x <= y") == as_le(x, y) assert fromstring("x >= y") == as_ge(x, y) assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)