Пример #1
0
def calc_log_avg_fft(x):
    if len(x.shape) == 2:
        return np.log(
            fftshift(
                np.abs(fftpack.fft2(x.reshape(x.shape[0], 32,
                                              32))).mean(axis=0)))
    else:
        return np.log(fftshift(np.abs(fftpack.fft2(x.reshape(32, 32)))))
Пример #2
0
def wiener_filter(img, kernel, K = 10):
    temp_img = np.copy(img)
    kernel = np.pad(kernel, [(0, temp_img.shape[0] - kernel.shape[0]), (0, temp_img.shape[1] - kernel.shape[1])], 'constant')
    # Fourier Transform
    temp_img = fft2(temp_img)
    kernel = fft2(kernel)
    kernel = np.conj(kernel) / (np.abs(kernel) ** 2 + K)
    temp_img = temp_img * kernel
    temp_img = np.abs(ifft2(temp_img))
    return np.uint8(temp_img)
Пример #3
0
def fft_convolve(im, filt):
    t1 = time.clock()
    shp_w = im.shape[0] + filt.shape[0]
    shp_h = im.shape[1] + filt.shape[1]
    f_c = fftpack.fft2(filt[::-1, ::-1], s=(shp_w, shp_h))
    f_im = fftpack.fft2(im, s=(shp_w, shp_h))
    res = np.real(fftpack.ifft2(f_c * f_im))
    b = (filt.shape[0] - 1) // 2
    res = res[b:-b - 1, b:-b - 1]
    t2 = time.clock()
    tt = t2 - t1
    print("Elapsed time fft_convolve %fs" % tt)
    return res, tt
Пример #4
0
def fft_convolve(im, filt):
    t1 = time.clock()
    shp_w = im.shape[0] + filt.shape[0]
    shp_h = im.shape[1] + filt.shape[1]
    f_c = fftpack.fft2(filt[::-1, ::-1], s=(shp_w, shp_h))
    f_im = fftpack.fft2(im, s=(shp_w, shp_h))
    res = np.real(fftpack.ifft2(f_c * f_im))
    b = (filt.shape[0] - 1) // 2
    res = res[b:-b - 1, b:-b - 1]
    t2 = time.clock()
    tt = t2 - t1
    print("Elapsed time fft_convolve %fs" % tt)
    return res, tt
Пример #5
0
    def __init__(self):
        self.fig = plt.figure()

        originalImage = Image.open('Fourier.jpg')
        (ow, oh) = originalImage.size

        if ow > maxWidth:
            monoImageArray = numpy.asarray(
                originalImage.convert('L').resize(
                    (maxWidth, oh * maxWidth // ow)))
        else:
            monoImageArray = numpy.asarray(originalImage.convert('L'))

        (self.imageHeight, self.imageWidth) = monoImageArray.shape
        self.samples = numpy.zeros((self.imageHeight, self.imageWidth),
                                   dtype=complex)
        self.samplePoints = numpy.zeros((self.imageHeight, self.imageWidth, 4))
        self.fftImage = fftpack.fft2(monoImageArray)
        self.fftImageForPlot = numpy.roll(numpy.roll(numpy.real(self.fftImage),
                                                     self.imageHeight // 2,
                                                     axis=0),
                                          self.imageWidth // 2,
                                          axis=1)
        self.fftMean = numpy.mean(self.fftImageForPlot)
        self.fftStd = numpy.std(self.fftImageForPlot)

        self.axes1 = plt.subplot(2, 3, 1)
        plt.imshow(monoImageArray, cmap='gray')

        self.axes2 = plt.subplot(2, 3, 2)
        p = plt.imshow(self.fftImageForPlot, cmap='gray')
        p.set_clim(self.fftMean - self.fftStd, self.fftMean + self.fftStd)

        self.axes3 = plt.subplot(2, 3, 4)
        self.axes3.set_aspect('equal')
        self.axes3.set_xlim(0, self.imageWidth)
        self.axes3.set_ylim(self.imageHeight, 0)

        self.axes4 = plt.subplot(2, 3, 5)
        self.axes4.set_aspect('equal')
        self.axes4.set_xlim(0, self.imageWidth)
        self.axes4.set_ylim(self.imageHeight, 0)

        self.axes5 = plt.subplot(2, 3, 6)
        self.axes5.set_aspect('equal')
        self.axes5.set_xlim(0, self.imageWidth)
        self.axes5.set_ylim(self.imageHeight, 0)

        self.bMousePressed = False
        self.mouseButton = 0
        self.bCtrlPressed = False
        self.fig.canvas.mpl_connect('motion_notify_event', self.onMove)
        self.fig.canvas.mpl_connect('button_press_event', self.onButtonPress)
        self.fig.canvas.mpl_connect('button_release_event',
                                    self.onButtonRelease)
        self.fig.canvas.mpl_connect('key_press_event', self.onKeyPress)
        self.fig.canvas.mpl_connect('key_release_event', self.onKeyRelease)

        plt.show()
Пример #6
0
def power_spectrum(pref, peak_val=1.0):
    """
    Computes the FFT power spectrum of the orientation preference.
    """
    fft_spectrum = abs(fftshift(fft2(pref-0.5, s=None, axes=(-2,-1))))
    fft_spectrum = 1 - fft_spectrum # Inverted spectrum by convention
    zero_min_spectrum = fft_spectrum - fft_spectrum.min()
    spectrum_range = fft_spectrum.max() - fft_spectrum.min()
    normalized_spectrum = (peak_val * zero_min_spectrum) / spectrum_range
    return normalized_spectrum
Пример #7
0
def power_spectrum(pref, peak_val=1.0):
    """
    Computes the FFT power spectrum of the orientation preference.
    """
    fft_spectrum = abs(fftshift(fft2(pref - 0.5, s=None, axes=(-2, -1))))
    fft_spectrum = 1 - fft_spectrum  # Inverted spectrum by convention
    zero_min_spectrum = fft_spectrum - fft_spectrum.min()
    spectrum_range = fft_spectrum.max() - fft_spectrum.min()
    normalized_spectrum = (peak_val * zero_min_spectrum) / spectrum_range
    return normalized_spectrum
Пример #8
0
    def _process(self, sheetview):
        cr = sheetview.cyclic_range
        data = sheetview.data if cr is None else sheetview.data/cr
        fft_spectrum = abs(fftshift(fft2(data - 0.5, s=None, axes=(-2, -1))))
        fft_spectrum = 1 - fft_spectrum # Inverted spectrum by convention
        zero_min_spectrum = fft_spectrum - fft_spectrum.min()
        spectrum_range = fft_spectrum.max() - fft_spectrum.min()
        normalized_spectrum = (self.p.peak_val * zero_min_spectrum) / spectrum_range

        l, b, r, t = sheetview.bounds.lbrt()
        density = sheetview.xdensity
        bb = BoundingBox(radius=(density/2)/(r-l))

        return [SheetView(normalized_spectrum, bb,
                          metadata=sheetview.metadata,
                          label=sheetview.label+' FFT Power Spectrum')]
Пример #9
0
def OR_power_spectrum(image, toarray=True, peak_val=1.0):
    """ Taken from current topographica code. Applies FFT power
        spectrum to hue channel of OR maps (ie orientation). Accepts
        RGB images or arrays."""

    # Duplicates the line of code in command/pylabplot.py and tkgui.
    # Unfortunately, there is no sensible way to reuse the existing code
    if not toarray: peak_val = 255
    if not image.shape[0] % 2:
        hue = image[:-1, :-1]
    else:
        hue = image
    fft_spectrum = abs(fftshift(fft2(hue - 0.5, s=None, axes=(-2, -1))))
    fft_spectrum = 1 - fft_spectrum  # Inverted spectrum by convention
    zero_min_spectrum = fft_spectrum - fft_spectrum.min()
    spectrum_range = fft_spectrum.max() - fft_spectrum.min()
    normalized_spectrum = (peak_val * zero_min_spectrum) / spectrum_range

    if not toarray:
        return Image.fromarray(normalized_spectrum.astype('uint8'), mode='L')
    return normalized_spectrum
Пример #10
0
 def __call__(self, data, **params):
     p = ParamOverrides(self, params)
     fft_plot = 1 - np.abs(fftshift(fft2(data - 0.5, s=None,
                                         axes=(-2, -1))))
     return super(fftplot, self).__call__(fft_plot, **p)
Пример #11
0
 def __call__(self, data, **params):
     p = ParamOverrides(self, params)
     fft_plot = 1 - np.abs(fftshift(fft2(data - 0.5, s=None, axes=(-2, -1))))
     return super(fftplot, self).__call__(fft_plot, **p)
Пример #12
0
def get_angle(x):
    return np.angle(fftpack.fft2(x.reshape(32, 32)))
Пример #13
0
def get_abs(x):
    return np.abs(fftpack.fft2(x.reshape(32, 32)))
Пример #14
0
def phasecong100(im,
                 nscale=2,
                 norient=2,
                 minWavelength=7,
                 mult=2,
                 sigmaOnf=0.65):
    #
    #     im                       # Input image
    #     nscale          = 2;     # Number of wavelet scales.
    #     norient         = 2;     # Number of filter orientations.
    #     minWaveLength   = 7;     # Wavelength of smallest scale filter.
    #     mult            = 2;     # Scaling factor between successive filters.
    #     sigmaOnf        = 0.65;  # Ratio of the standard deviation of the
    #                              # Gaussian describing the log Gabor filter's
    #                              # transfer function in the frequency domain
    #                              # to the filter center frequency.

    rows, cols = im.shape
    imagefft = fft2(im)
    zero = np.zeros(shape=(rows, cols))

    EO = dict()
    EnergyV = np.zeros((rows, cols, 3))

    x_range = np.linspace(-0.5, 0.5, num=cols, endpoint=True)
    y_range = np.linspace(-0.5, 0.5, num=rows, endpoint=True)

    x, y = np.meshgrid(x_range, y_range)
    radius = np.sqrt(x**2 + y**2)

    theta = np.arctan2(-y, x)

    radius = ifftshift(radius)

    theta = ifftshift(theta)

    radius[0, 0] = 1.

    sintheta = np.sin(theta)
    costheta = np.cos(theta)

    lp = lowpass_filter((rows, cols), 0.45, 15)

    logGabor = []
    for s in range(1, nscale + 1):
        wavelength = minWavelength * mult**(s - 1.)
        fo = 1.0 / wavelength
        logGabor.append(
            np.exp((-(np.log(radius / fo))**2) / (2 * np.log(sigmaOnf)**2)))
        logGabor[-1] *= lp
        logGabor[-1][0, 0] = 0

    # The main loop...
    for o in range(1, norient + 1):
        angl = (o - 1.) * np.pi / norient
        ds = sintheta * np.cos(angl) - costheta * np.sin(angl)
        dc = costheta * np.cos(angl) + sintheta * np.sin(angl)
        dtheta = np.abs(np.arctan2(ds, dc))
        dtheta = np.minimum(dtheta * norient / 2., np.pi)
        spread = (np.cos(dtheta) + 1.) / 2.
        sumE_ThisOrient = zero.copy()
        sumO_ThisOrient = zero.copy()
        for s in range(0, nscale):
            filter_ = logGabor[s] * spread
            EO[(s, o)] = ifft2(imagefft * filter_)
            sumE_ThisOrient = sumE_ThisOrient + np.real(EO[(s, o)])
            sumO_ThisOrient = sumO_ThisOrient + np.imag(EO[(s, o)])
        EnergyV[:, :, 0] = EnergyV[:, :, 0] + sumE_ThisOrient
        EnergyV[:, :, 1] = EnergyV[:, :, 1] + np.cos(angl) * sumO_ThisOrient
        EnergyV[:, :, 2] = EnergyV[:, :, 2] + np.sin(angl) * sumO_ThisOrient
    OddV = np.sqrt(EnergyV[:, :, 0]**2 + EnergyV[:, :, 1]**2)
    featType = np.arctan2(EnergyV[:, :, 0], OddV)
    return featType