Пример #1
0
    def test_basic_behaviour(self):
        c = _FFTCache(max_size_in_mb=1, max_item_count=4)

        # Put
        c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))

        # Get
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))

        # Nothing should be left.
        assert_equal(len(c._dict), 0)

        # Now put everything in twice so it can be retrieved once and each will
        # still have one item left.
        for _ in range(2):
            c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
            c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))
        assert_equal(len(c._dict), 2)
Пример #2
0
    def test_basic_behaviour(self):
        c = _FFTCache(max_size_in_mb=1, max_item_count=4)

        # Put
        c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))

        # Get
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))

        # Nothing should be left.
        assert_equal(len(c._dict), 0)

        # Now put everything in twice so it can be retrieved once and each will
        # still have one item left.
        for _ in range(2):
            c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
            c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))
        assert_equal(len(c._dict), 2)
Пример #3
0
    def test_automatic_pruning(self):
        # That's around 2600 single precision samples.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)

        c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2])

        # This is larger than the limit but should still be kept.
        c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3])
        # Add one more.
        c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
        # The other three should no longer exist.
        assert_equal(list(c._dict.keys()), [4])

        # Now test the max item count pruning.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
        c.put_twiddle_factors(2, np.empty(2))
        c.put_twiddle_factors(1, np.empty(2))
        # Can still be accessed.
        assert_equal(list(c._dict.keys()), [2, 1])

        c.put_twiddle_factors(3, np.empty(2))
        # 1 and 3 can still be accessed - c[2] has been touched least recently
        # and is thus evicted.
        assert_equal(list(c._dict.keys()), [1, 3])

        # One last test. We will add a single large item that is slightly
        # bigger then the cache size. Some small items can still be added.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
        c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3, 4])

        # One more big item. This time it is 6 smaller ones but they are
        # counted as one big item.
        for _ in range(6):
            c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
        # '1' no longer in the cache. Rest still in the cache.
        assert_equal(list(c._dict.keys()), [2, 3, 4, 5])

        # Another big item - should now be the only item in the cache.
        c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [6])
Пример #4
0
    def test_automatic_pruning(self):
        # That's around 2600 single precision samples.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)

        c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2])

        # This is larger than the limit but should still be kept.
        c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3])
        # Add one more.
        c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
        # The other three should no longer exist.
        assert_equal(list(c._dict.keys()), [4])

        # Now test the max item count pruning.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
        c.put_twiddle_factors(2, np.empty(2))
        c.put_twiddle_factors(1, np.empty(2))
        # Can still be accessed.
        assert_equal(list(c._dict.keys()), [2, 1])

        c.put_twiddle_factors(3, np.empty(2))
        # 1 and 3 can still be accessed - c[2] has been touched least recently
        # and is thus evicted.
        assert_equal(list(c._dict.keys()), [1, 3])

        # One last test. We will add a single large item that is slightly
        # bigger then the cache size. Some small items can still be added.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
        c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3, 4])

        # One more big item. This time it is 6 smaller ones but they are
        # counted as one big item.
        for _ in range(6):
            c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
        # '1' no longer in the cache. Rest still in the cache.
        assert_equal(list(c._dict.keys()), [2, 3, 4, 5])

        # Another big item - should now be the only item in the cache.
        c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [6])