Пример #1
0
    def convert_data_to_common_fmt(self):
        """ Common Data to Common format """
        from numpy import ma

        header = ""
        unitheader = ""
        items = self.masterparamlist.items()
        items.sort()
        for param, unit in items:  # assumes this will be displayed alpabetically
            header = header + param + ", "
            unitheader = unitheader + unit + ", "
            try:
                idx = self.paramlist[param][1]
                try:
                    finaldata = ma.column_stack((finaldata, self.data[:, idx]))
                except:
                    finaldata = self.data[:, idx]
            except:
                tmp = self.data[:, 0].copy()
                tmp.mask = True
                try:
                    finaldata = ma.column_stack((finaldata, tmp))
                except:
                    finaldata = tmp

        self.fieldheader = header
        self.unitheader = unitheader
        self.finaldata = ma.column_stack((self.dates, finaldata))
Пример #2
0
    def convert_data_to_common_fmt(self):
        """ Common Data to Common format """
        from numpy import ma
        header = ''
        unitheader = ''
        items = self.masterparamlist.items()
        items.sort()
        for param, unit in items:  #assumes this will be displayed alpabetically
            header = header + param + ', '
            unitheader = unitheader + unit + ', '
            try:
                idx = self.paramlist[param][1]
                try:
                    finaldata = ma.column_stack((finaldata, self.data[:, idx]))
                except:
                    finaldata = self.data[:, idx]
            except:
                tmp = self.data[:, 0].copy()
                tmp.mask = True
                try:
                    finaldata = ma.column_stack((finaldata, tmp))
                except:
                    finaldata = tmp

        self.fieldheader = header
        self.unitheader = unitheader
        self.finaldata = ma.column_stack((self.dates, finaldata))
def reference_phase_generator(**kwarg):
    sampling_frequency = kwarg["sampling_frequency"]
    communication_frequency = kwarg["communication_frequency"]

    sampling_time = 1 / sampling_frequency
    communication_time = 1 / communication_frequency

    ratio = communication_time / sampling_time
    preamble = array([1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0])

    inPhase_elements = preamble[::2]
    quadrature_elements = preamble[1::2]
    inPhase_elements = inPhase_elements * 2 - 1
    quadrature_elements = quadrature_elements * 2 - 1

    # creation of pulse shaping in sin
    k = arange(0, 2 * communication_time, sampling_time)
    pulse_shape = sin((math.pi * k) / (2 * communication_time))
    pulse_shape = repmat(pulse_shape, 16, 1)

    # Oversample of I & Q and blocker order 0
    Iup = repmat(inPhase_elements, int(2 * ratio), 1)
    Qup = repmat(quadrature_elements, int(2 * ratio), 1)

    # signal pulse shaping
    Iup = Iup * pulse_shape.transpose()
    Qup = Qup * pulse_shape.transpose()

    # wave shaping
    Iup = Iup.reshape(1, int(16 * 2 * ratio))
    Qup = Qup.reshape(1, int(16 * 2 * ratio))
    # repeat the matrix for 8 symbols
    I8up = repmat(Iup, 1, 8)
    Q8up = repmat(Qup, 1, 8)

    # application of 90 degrees offset on Q for reference only
    Iup = column_stack((Iup, zeros([1, 10], 'int')))
    Qup = column_stack((zeros([1, 10], 'int'), Qup))

    # construction of a phase cycle
    signal = Iup + 1j * Qup
    phase_cycle = unwrap(angle(signal))

    phase_cycle = array(phase_cycle[0, 10:-10])

    # applying the 90 degrees offset on Q
    I8up = column_stack((I8up, zeros([1, 10], 'int')))
    Q8up = column_stack((zeros([1, 10], 'int'), Q8up))

    # complex signal shaping
    signal = I8up + 1j * Q8up

    # creation of the theoretical phase
    phase_ref = unwrap(angle(signal))
    phase_ref = phase_ref[0, 10:]

    return phase_ref
    def postProcessor_burst_collector(self):
        # saving the whole burst in the data-bank
        self.collected_burst = self.collected_burst[1:]
        self.collected_burst = reshape(self.collected_burst,
                                       size(self.collected_burst), 1)
        if size(self.data_collection) == 0:
            self.data_collection = self.collected_burst
        else:
            self.data_collection = column_stack(
                (self.data_collection, self.collected_burst))

        self.label_vector = column_stack(
            (self.label_vector, self.device_label))
        self.collected_burst = 0
    def finger_print_burst_collector(self):
        # saving the whole burst in the data-bank
        self.collected_burst = self.collected_burst[1:]
        self.collected_burst = reshape(self.collected_burst,
                                       [size(self.collected_burst, 0), 1])
        if size(self.data_collection) == 0:
            self.data_collection = self.collected_burst
        else:
            self.data_collection = column_stack(
                (self.data_collection, self.collected_burst))

        self.label_vector = column_stack(
            (self.label_vector, self.device_label))
        self.collected_burst = 0
    def __Read_GDHY(v_name, year, lon_min, lon_max, lat_min, lat_max):
        f = netCDF4.Dataset("RawData/yields/" + v_name + "/yield_" +
                            str(year) + ".nc4")
        lats = f.variables['lat'][:]  # degrees north (360)
        lons = f.variables['lon'][:]  # degrees east (720)
        var = f.variables["var"][:]  # yield in t/ha (360,720)
        f.close()

        # rearrange in right format
        var_lonpos = var[:, lons < 180]
        var_lonneg = var[:, lons > 180]
        var_changed = np_ma.column_stack([var_lonneg, var_lonpos])
        lons = np.arange(-179.75, 180, 0.5)

        # define longitudes/latitudes corresponding to West Africa
        lons_WA = lons[(lons >= lon_min) & (lons <= lon_max)]
        lats_WA = lats[(lats >= lat_min) & (lats <= lat_max)]

        # reduce to region of West Africa and set missing values to NAN
        # shifted by one cell in both directions
        var_rel = var_changed[((lats>=(lat_min+0.5)) & (lats<=(lat_max+0.5))),:] \
                            [:,((lons>=(lon_min+0.5)) & (lons<=(lon_max+0.5)))]
        var_rel.set_fill_value(value=np.nan)
        var_rel_filled = var_rel.filled()
        mask_rel = var_rel.mask

        return (var_rel_filled, mask_rel, lats_WA, lons_WA)
Пример #7
0
    def calc_sal_EC(self, param, val, idx):
        """
        convert non normalised conductivity to salinity NOTE MUST BE DONE LAST AFTER OTHER CONVERSIONS
        using seawater package
        
        """

        print "~ calculating salinity from non normalised EC using seawater package~"
        from numpy import ma
        import seawater

        self.paramlist[param] = ("PSU", self.paramlist[param][1])
        T = val[:, self.paramlist["Temperature"][1]]
        cond = val[:, self.paramlist["EC_Norm"][1]]

        # absolute pressure in dbar
        P = val[:, self.paramlist["WaterLevel(Non_Vented)"][1]] * 1.0197 + 10.1325

        # if (self.paramlist['EC_Norm'][0]!='ms/cm':
        #    cond = self.conversion_factor[self.paramlist['EC_Norm'][0]][cond]

        R = cond / 42.914

        self.paramlist[param] = ("EC_Norm", self.paramlist[param][1])

        sal = seawater.salt(R, T, P)

        return ma.column_stack((val, sal))
Пример #8
0
    def calc_sal_EC(self, param, val, idx):
        """
        convert non normalised conductivity to salinity NOTE MUST BE DONE LAST AFTER OTHER CONVERSIONS
        using seawater package
        
        """

        print '~ calculating salinity from non normalised EC using seawater package~'
        from numpy import ma
        import seawater
        self.paramlist[param] = ('PSU', self.paramlist[param][1])
        T = val[:, self.paramlist['Temperature'][1]]
        cond = val[:, self.paramlist['EC_Norm'][1]]

        #absolute pressure in dbar
        P = val[:,
                self.paramlist['WaterLevel(Non_Vented)'][1]] * 1.0197 + 10.1325

        #if (self.paramlist['EC_Norm'][0]!='ms/cm':
        #    cond = self.conversion_factor[self.paramlist['EC_Norm'][0]][cond]

        R = cond / 42.914

        self.paramlist[param] = ('EC_Norm', self.paramlist[param][1])

        sal = seawater.salt(R, T, P)

        return (ma.column_stack((val, sal)))
Пример #9
0
 def extend_interp(datafield):
   # add masked values at southernmost end
   southernlimitmask = ma.masked_all(len(self.olon))
   olat_ext          = np.append(-82.1,self.olat)
   dfield_ext = ma.concatenate([ma.column_stack(southernlimitmask), datafield], 0)
   # f = interp2d(self.olon, olat_ext, dfield_ext)
   # return f(self.pismlon, self.pismlat)
   return interp(dfield_ext, self.olon, olat_ext, self.pismlon, self.pismlat)
Пример #10
0
    def calc_sal_MCTD(self, param, val, idx):
        """
        convert conductivity to salinity NOTE MUST BE DONE LAST AFTER OTHER CONVERSIONS
        http://www.coastal-usa.com/The%20Macro%20Manual.pdf
        
        """

        print "~ calculating MCTD salinity ~"
        from numpy import ma
        import seawater

        self.paramlist[param] = ("PSU", self.paramlist[param][1])
        T = val[:, self.paramlist["Temperature"][1]]
        cond = val[:, self.paramlist["EC_Norm"][1]]

        # absolute pressure in dbar
        P = val[:, self.paramlist["WaterLevel(Non_Vented)"][1]] * 1.0197 + 10.1325

        # if (self.paramlist['EC_Norm'][0]!='ms/cm':
        #    cond = self.conversion_factor[self.paramlist['EC_Norm'][0]][cond]

        R = cond / 42.914

        # sal2 = seawater.salt(R,T,P)
        # pressure correction
        F = (1.60836 * pow(10, -5)) * P - (5.4845 * pow(10, -10)) * pow(P, 2) + (6.166 * pow(10, -15)) * pow(P, 3)
        F = F / (1 + (3.0786 * pow(10, -2)) * T + (3.169 * pow(10, -4)) * pow(T, 2))
        R = R / (1 + F)

        # Temperature Correction
        T100 = T / 100.0
        R = R / (
            0.6765836 + 2.005294 * (T100) + 1.11099 * pow(T100, 2) - 0.726684 * pow(T100, 3) + 0.13587 * pow(T100, 4)
        )

        # salinity
        self.paramlist[param] = ("EC_Norm", self.paramlist[param][1])
        sal = (
            -0.8996
            + 28.8567 * R
            + 12.18882 * pow(R, 2)
            - 10.61869 * pow(R, 3)
            + 5.9862 * pow(R, 4)
            - 1.32311 * pow(R, 5)
            + R
            * (R - 1)
            * (
                0.0442 * T
                - 0.46 * pow(10, -3) * pow(T, 2)
                - 4 * pow(10, -3) * R * T
                + (1.25 * pow(10, -4) - 2.9 * pow(10, -6) * T) * P
            )
        )

        return ma.column_stack((val, sal))
Пример #11
0
    def calc_sal_MCTD(self, param, val, idx):
        """
        convert conductivity to salinity NOTE MUST BE DONE LAST AFTER OTHER CONVERSIONS
        http://www.coastal-usa.com/The%20Macro%20Manual.pdf
        
        """

        print '~ calculating MCTD salinity ~'
        from numpy import ma
        import seawater
        self.paramlist[param] = ('PSU', self.paramlist[param][1])
        T = val[:, self.paramlist['Temperature'][1]]
        cond = val[:, self.paramlist['EC_Norm'][1]]

        #absolute pressure in dbar
        P = val[:,
                self.paramlist['WaterLevel(Non_Vented)'][1]] * 1.0197 + 10.1325

        #if (self.paramlist['EC_Norm'][0]!='ms/cm':
        #    cond = self.conversion_factor[self.paramlist['EC_Norm'][0]][cond]

        R = cond / 42.914

        #sal2 = seawater.salt(R,T,P)
        #pressure correction
        F = (1.60836 * pow(10, -5)) * P - (5.4845 * pow(10, -10)) * pow(
            P, 2) + (6.166 * pow(10, -15)) * pow(P, 3)
        F = F / (1 + (3.0786 * pow(10, -2)) * T +
                 (3.169 * pow(10, -4)) * pow(T, 2))
        R = R / (1 + F)

        #Temperature Correction
        T100 = T / 100.0
        R = R / (0.6765836 + 2.005294 * (T100) + 1.11099 * pow(T100, 2) -
                 0.726684 * pow(T100, 3) + 0.13587 * pow(T100, 4))

        #salinity
        self.paramlist[param] = ('EC_Norm', self.paramlist[param][1])
        sal = -0.8996 + 28.8567 * R + 12.18882 * pow(R, 2) - 10.61869 * pow(
            R, 3) + 5.9862 * pow(R, 4) - 1.32311 * pow(R, 5) + R * (
                R - 1) * (0.0442 * T - 0.46 * pow(10, -3) * pow(T, 2) -
                          4 * pow(10, -3) * R * T +
                          (1.25 * pow(10, -4) - 2.9 * pow(10, -6) * T) * P)

        return (ma.column_stack((val, sal)))