def __new__(cls, c): """ """ c = c.view(matlib.matrix).reshape(1, -1) T = matlib.vstack(( matlib.hstack((matlib.identity(c.size), c)), matlib.hstack((matlib.zeros(c.size), matlib.ones(1))), )) return super().__new__(cls, T)
def increase_input_size(self, nb_added_input = 1): """ Increases the number of inputs the network needs """ added_input_weights = self.input_scaling * EchoStateNetwork._rand_matrix(self.reservoir_size, nb_added_input) self.input_weights = npmat.hstack([self.input_weights, added_input_weights]) self.input_size += nb_added_input if not self.use_raw_input: return self.state_size += nb_added_input self.state = npmat.vstack([self.state, npmat.zeros((nb_added_input, 1))]) self.output_weights = npmat.hstack([self.output_weights, npmat.zeros((self.output_size, nb_added_input))])
def firstInitElem(m33, sortEigs, alpha, A): l1 = sortEigs[0] l2 = sortEigs[1] l3 = sortEigs[2] m1 = -m33 + l1 + l2 + l3 m2=-((l2-l3)*(l1**2-l1*l2-l1*l3+l2*l3)*(m33**3-2*m33**2*l1+m33*l1**2-2*m33**2*l2+3*m33*l1*l2-l1**2*l2+m33*l2**2- \ l1*l2**2-2*m33**2*l3+3*m33*l1*l3-l1**2*l3+3*m33*l2*l3-2*l1*l2*l3-l2**2*l3+m33*l3**2-l1*l3**2-l2*l3**2))/ \ (2*m33*l1**2*l2+2*m33**2*l1**2*l2-l1**3*l2-3*m33*l1**3*l2+l1**4*l2-2*m33*l1*l2**2-2*m33**2*l1*l2**2+l1**3*l2**2+ \ l1*l2**3+3*m33*l1*l2**3-l1**2*l2**3-l1*l2**4-2*m33*l1**2*l3-2*m33**2*l1**2*l3+l1**3*l3+3*m33*l1**3*l3-l1**4*l3+ \ 2*m33*l2**2*l3+2*m33**2*l2**2*l3-l2**3*l3-3*m33*l2**3*l3+l2**4*l3+2*m33*l1*l3**2+2*m33**2*l1*l3**2-l1**3*l3**2- \ 2*m33*l2*l3**2-2*m33**2*l2*l3**2+l2**3*l3**2-l1*l3**3-3*m33*l1*l3**3+l1**2*l3**3+l2*l3**3+3*m33*l2*l3**3-l2**2*l3**3+ \ l1*l3**4-l2*l3**4) m3=((l2-l3)*(l1**2-l1*l2-l1*l3+l2*l3)*(m33**3+m33**4-m33**2*l1-2*m33**3*l1+m33**2*l1**2-m33**2*l2-2*m33**3*l2+ \ m33*l1*l2+3*m33**2*l1*l2-m33*l1**2*l2+m33**2*l2**2-m33*l1*l2**2-m33**2*l3-2*m33**3*l3+m33*l1*l3+3*m33**2*l1*l3- \ m33*l1**2*l3+m33*l2*l3+3*m33**2*l2*l3-l1*l2*l3-4*m33*l1*l2*l3+l1**2*l2*l3-m33*l2**2*l3+l1*l2**2*l3+m33**2*l3**2- \ m33*l1*l3**2-m33*l2*l3**2+l1*l2*l3**2))/(-2*m33*l1**2*l2-2*m33**2*l1**2*l2-m33**3*l1**2*l2+l1**3*l2+3*m33*l1**3*l2+ \ 2*m33**2*l1**3*l2-l1**4*l2-m33*l1**4*l2+2*m33*l1*l2**2+2*m33**2*l1*l2**2+m33**3*l1*l2**2-l1**3*l2**2-2*m33*l1**3*l2**2+ \ l1**4*l2**2-l1*l2**3-3*m33*l1*l2**3-2*m33**2*l1*l2**3+l1**2*l2**3+2*m33*l1**2*l2**3+l1*l2**4+m33*l1*l2**4-l1**2*l2**4+ \ 2*m33*l1**2*l3+2*m33**2*l1**2*l3+m33**3*l1**2*l3-l1**3*l3-3*m33*l1**3*l3-2*m33**2*l1**3*l3+l1**4*l3+m33*l1**4*l3- \ 2*m33*l2**2*l3-2*m33**2*l2**2*l3-m33**3*l2**2*l3+l2**3*l3+3*m33*l2**3*l3+2*m33**2*l2**3*l3-l2**4*l3-m33*l2**4*l3- \ 2*m33*l1*l3**2-2*m33**2*l1*l3**2-m33**3*l1*l3**2+l1**3*l3**2+2*m33*l1**3*l3**2-l1**4*l3**2+2*m33*l2*l3**2+2*m33**2*l2*l3**2+ \ m33**3*l2*l3**2-l2**3*l3**2-2*m33*l2**3*l3**2+l2**4*l3**2+l1*l3**3+3*m33*l1*l3**3+2*m33**2*l1*l3**3-l1**2*l3**3- \ 2*m33*l1**2*l3**3-l2*l3**3-3*m33*l2*l3**3-2*m33**2*l2*l3**3+l2**2*l3**3+2*m33*l2**2*l3**3-l1*l3**4-m33*l1*l3**4+ \ l1**2*l3**4+l2*l3**4+m33*l2*l3**4-l2**2*l3**4) b3 = np.sum(ml.eye(3) - A, 1) / (1 - m3 - m33) b2 = (-m33 * ml.eye(3) + A) * b3 / (1 - m2) b1 = (-m3 * b3 + A * b2) / (1 - m1) B = ml.hstack((b1, b2, b3)) a1 = alpha * b1 return (a1, m1, m2, m3, B)
def __init__(self, x1, x2, fclass=None): super(Graph, self).__init__() self.xres = x1.shape[0] self.yres = x1.shape[1] self.fclass = fclass n = 2 * x1.size - 2 * self.yres self.add_nodes_from(range(1, n + 1)) x1 = np.vstack((x1.reshape((-1, 1)), x1[-2:0:-1].reshape((-1, 1)))) x2 = np.vstack((x2.reshape((-1, 1)), x2[-2:0:-1].reshape((-1, 1)))) self.x = np.hstack((x1, x2)) self.pos = dict( zip(range(1, n + 1), zip(x1.T.tolist()[0], x2.T.tolist()[0]))) self.full = nx.DiGraph(self) for i in range(1, n + 1): for j in self.column(i): dx1 = np.absolute(self.pos[j][0] - self.pos[i][0]) dx2 = np.absolute(self.pos[j][1] - self.pos[i][1]) if dx2 <= dx1 / _GRAPH_ASPECT_RATIO: self.full.add_edge(i, j) tmp = 1 self.basic = set() step = self.yres / _GRAPH_YRES_BASIC while tmp < n + 1: self.basic = self.basic | set(self.column(tmp)[0::step]) tmp = tmp + self.yres self.update_active()
def __init__(self, x1, x2, fclass=None): super(Graph, self).__init__() self.xres = x1.shape[0] self.yres = x1.shape[1] self.fclass = fclass n = 2*x1.size - 2*self.yres self.add_nodes_from(range(1, n+1)) x1 = np.vstack((x1.reshape((-1, 1)), x1[-2:0:-1].reshape((-1, 1)))) x2 = np.vstack((x2.reshape((-1, 1)), x2[-2:0:-1].reshape((-1, 1)))) self.x = np.hstack((x1, x2)) self.pos = dict(zip(range(1, n+1), zip(x1.T.tolist()[0], x2.T.tolist()[0]))) self.full = nx.DiGraph(self) for i in range(1, n+1): for j in self.column(i): dx1 = np.absolute(self.pos[j][0] - self.pos[i][0]) dx2 = np.absolute(self.pos[j][1] - self.pos[i][1]) if dx2 <= dx1 / _GRAPH_ASPECT_RATIO: self.full.add_edge(i, j) tmp = 1 self.basic = set() step = self.yres/_GRAPH_YRES_BASIC while tmp < n+1: self.basic = self.basic | set(self.column(tmp)[0::step]) tmp = tmp + self.yres self.update_active()
def firstInitElem(m33,sortEigs,alpha,A): l1=sortEigs[0] l2=sortEigs[1] l3=sortEigs[2] m1=-m33+l1+l2+l3 m2=-((l2-l3)*(l1**2-l1*l2-l1*l3+l2*l3)*(m33**3-2*m33**2*l1+m33*l1**2-2*m33**2*l2+3*m33*l1*l2-l1**2*l2+m33*l2**2- \ l1*l2**2-2*m33**2*l3+3*m33*l1*l3-l1**2*l3+3*m33*l2*l3-2*l1*l2*l3-l2**2*l3+m33*l3**2-l1*l3**2-l2*l3**2))/ \ (2*m33*l1**2*l2+2*m33**2*l1**2*l2-l1**3*l2-3*m33*l1**3*l2+l1**4*l2-2*m33*l1*l2**2-2*m33**2*l1*l2**2+l1**3*l2**2+ \ l1*l2**3+3*m33*l1*l2**3-l1**2*l2**3-l1*l2**4-2*m33*l1**2*l3-2*m33**2*l1**2*l3+l1**3*l3+3*m33*l1**3*l3-l1**4*l3+ \ 2*m33*l2**2*l3+2*m33**2*l2**2*l3-l2**3*l3-3*m33*l2**3*l3+l2**4*l3+2*m33*l1*l3**2+2*m33**2*l1*l3**2-l1**3*l3**2- \ 2*m33*l2*l3**2-2*m33**2*l2*l3**2+l2**3*l3**2-l1*l3**3-3*m33*l1*l3**3+l1**2*l3**3+l2*l3**3+3*m33*l2*l3**3-l2**2*l3**3+ \ l1*l3**4-l2*l3**4) m3=((l2-l3)*(l1**2-l1*l2-l1*l3+l2*l3)*(m33**3+m33**4-m33**2*l1-2*m33**3*l1+m33**2*l1**2-m33**2*l2-2*m33**3*l2+ \ m33*l1*l2+3*m33**2*l1*l2-m33*l1**2*l2+m33**2*l2**2-m33*l1*l2**2-m33**2*l3-2*m33**3*l3+m33*l1*l3+3*m33**2*l1*l3- \ m33*l1**2*l3+m33*l2*l3+3*m33**2*l2*l3-l1*l2*l3-4*m33*l1*l2*l3+l1**2*l2*l3-m33*l2**2*l3+l1*l2**2*l3+m33**2*l3**2- \ m33*l1*l3**2-m33*l2*l3**2+l1*l2*l3**2))/(-2*m33*l1**2*l2-2*m33**2*l1**2*l2-m33**3*l1**2*l2+l1**3*l2+3*m33*l1**3*l2+ \ 2*m33**2*l1**3*l2-l1**4*l2-m33*l1**4*l2+2*m33*l1*l2**2+2*m33**2*l1*l2**2+m33**3*l1*l2**2-l1**3*l2**2-2*m33*l1**3*l2**2+ \ l1**4*l2**2-l1*l2**3-3*m33*l1*l2**3-2*m33**2*l1*l2**3+l1**2*l2**3+2*m33*l1**2*l2**3+l1*l2**4+m33*l1*l2**4-l1**2*l2**4+ \ 2*m33*l1**2*l3+2*m33**2*l1**2*l3+m33**3*l1**2*l3-l1**3*l3-3*m33*l1**3*l3-2*m33**2*l1**3*l3+l1**4*l3+m33*l1**4*l3- \ 2*m33*l2**2*l3-2*m33**2*l2**2*l3-m33**3*l2**2*l3+l2**3*l3+3*m33*l2**3*l3+2*m33**2*l2**3*l3-l2**4*l3-m33*l2**4*l3- \ 2*m33*l1*l3**2-2*m33**2*l1*l3**2-m33**3*l1*l3**2+l1**3*l3**2+2*m33*l1**3*l3**2-l1**4*l3**2+2*m33*l2*l3**2+2*m33**2*l2*l3**2+ \ m33**3*l2*l3**2-l2**3*l3**2-2*m33*l2**3*l3**2+l2**4*l3**2+l1*l3**3+3*m33*l1*l3**3+2*m33**2*l1*l3**3-l1**2*l3**3- \ 2*m33*l1**2*l3**3-l2*l3**3-3*m33*l2*l3**3-2*m33**2*l2*l3**3+l2**2*l3**3+2*m33*l2**2*l3**3-l1*l3**4-m33*l1*l3**4+ \ l1**2*l3**4+l2*l3**4+m33*l2*l3**4-l2**2*l3**4) b3=np.sum(ml.eye(3)-A,1)/(1-m3-m33) b2=(-m33*ml.eye(3)+A)*b3/(1-m2) b1=(-m3*b3+A*b2)/(1-m1) B=ml.hstack((b1,b2,b3)) a1=alpha*b1 return (a1,m1,m2,m3,B)
def get_u(self): points = npmat.hstack([s.center_position for s in self.solids]) center = npmat.asmatrix(npmat.average(points, axis = 1)).T centered_points = points - center correlation_matrix = (centered_points * centered_points.T)/self.nb_solids u = iterate(correlation_matrix, self.NB_ITERATIONS) return u
def __new__(cls, m, n): """ """ if not all(( isinstance(m, int), isinstance(n, int), )): raise ValueError data = matlib.hstack([ matlib.vstack(( matlib.hstack((matlib.identity(n, dtype=int), matlib.matrix(p, dtype=int).T)), matlib.hstack((matlib.matrix(p, dtype=int), matlib.ones(1))), )) for p in product(range(m), repeat=n) ]) return super().__new__(cls, data, dtype=int).view(cls)
def world_to_view(self, point): i = self.top.cross(self.normal).normalize() k = self.normal.normalize() j = k.cross(i) s = hstack([i.vec3d(), j.vec3d(), k.vec3d()]) p1 = s.T * point.vec3d() or1 = s.T * self.origin.vec3d() return p1 - or1
def colliding_boxes(self): nb_solids = self.nb_solids points = npmat.hstack([s.center_position for s in self.solids]) center = npmat.asmatrix(npmat.average(points, axis = 1)).T centered_points = points - center correlation_matrix = (centered_points * centered_points.T) / nb_solids u = iterate(correlation_matrix, self.NB_ITERATIONS) if self.projected_bounds is None: self.projected_bounds = [] for i in range(nb_solids): self.projected_bounds.append((i, 0, 0.)) self.projected_bounds.append((i, 1, 0.)) min_max_projections = npmat.empty((nb_solids, 2)) for solid_id in range(nb_solids): solid_AABB_corners = self.solids[solid_id].AABB_corners() corners_projections = u.T * solid_AABB_corners min_max_projections[solid_id, 0] = np.min(corners_projections) min_max_projections[solid_id, 1] = np.max(corners_projections) for i in range(2 * nb_solids): solid_id, begin_or_end_id, value = self.projected_bounds[i] new_value = min_max_projections[solid_id, begin_or_end_id] self.projected_bounds[i] = (solid_id, begin_or_end_id, new_value) # TODO: linear sorting self.projected_bounds.sort(key = lambda x : x[2]) output = [] active_solids = [] for i in range(2 * nb_solids): solid_id, begin_or_end_id, value = self.projected_bounds[i] if begin_or_end_id == 0: for active_solid_id in active_solids: if self.solids[active_solid_id].AABB_intersect_with(self.solids[solid_id]): output.append((active_solid_id, solid_id)) active_solids.append(solid_id) else: active_solids.remove(solid_id) return output
def __init__(self, points, masses): """ Inputs: points: list of 3 dimensional points masses: list of float (same length as points) """ self.nb_points = len(points) if self.nb_points == 0: raise (Exception, "Provide at least one point") if len(masses) != self.nb_points: raise (Exception, "Same number of points and masses must be provided") self.masses = masses self.initial_points = [Vect(p) for p in points] # Center of mass p and its velocity self.center_position = npmat.sum(self.initial_points, axis=0) / self.nb_points self.center_velocity = npmat.zeros((3, 1)) # Position of the points relative to the center of mass, stacked into a big matrix self.centered_initial_points_hstack = npmat.hstack( self.initial_points) - self.center_position # Total mass and its inverse self.total_mass = npmat.sum(self.masses) self.total_mass_inverse = 1. / self.total_mass # Inertia matrix and its inverse self.initial_inertia_matrix = Solid._inertia_matrix( self.masses, self.centered_initial_points_hstack) self.initial_inertia_matrix_inverse = npmat.linalg.pinv( self.initial_inertia_matrix) # Rotation quaternion (used to construct matrix representing orientation) and angular momentum (sigma) self.rotation_quaternion = Vect([1., 0., 0., 0.]) self.rotation_matrix = rotation_matrix_from_quaternion( self.rotation_quaternion) self.angular_momentum = npmat.zeros((3, 1)) self._compute_AABB()
def _compute_AABB(self): points = self.points_hstack() self.AABB = npmat.hstack([points.min(axis=1), points.max(axis=1)])
def GeneralFluidSolve (Q, R, Q0=[], prec=1e-14): """ Returns the parameters of the matrix-exponentially distributed stationary distribution of a general Markovian fluid model, where the fluid rates associated with the states of the background process can be arbitrary (zero is allowed as well). Using the returned 4 parameters the stationary solution can be obtained as follows. The probability that the fluid level is zero while being in different states of the background process is given by vector mass0. The density that the fluid level is x while being in different states of the background process is .. math:: \pi(x)=ini\cdot e^{K x}\cdot clo. Parameters ---------- Q : matrix, shape (N,N) The generator of the background Markov chain R : diagonal matrix, shape (N,N) The diagonal matrix of the fluid rates associated with the different states of the background process Q0 : matrix, shape (N,N), optional The generator of the background Markov chain at level 0. If not provided, or empty, then Q0=Q is assumed. The default value is empty. precision : double, optional Numerical precision for computing the fundamental matrix. The default value is 1e-14 Returns ------- mass0 : matrix, shape (1,Np+Nm) The stationary probability vector of zero level ini : matrix, shape (1,Np) The initial vector of the stationary density K : matrix, shape (Np,Np) The matrix parameter of the stationary density clo : matrix, shape (Np,Np+Nm) The closing matrix of the stationary density """ N = Q.shape[0] # partition the state space according to zero, positive and negative fluid rates ix = np.arange(N) ixz = ix[np.abs(np.diag(R))<=prec] ixp = ix[np.diag(R)>prec] ixn = ix[np.diag(R)<-prec] Nz = len(ixz) Np = len(ixp) Nn = len(ixn) # permutation matrix that converts between the original and the partitioned state ordering P = ml.zeros((N,N)) for i in range(Nz): P[i,ixz[i]]=1 for i in range(Np): P[Nz+i,ixp[i]]=1 for i in range(Nn): P[Nz+Np+i,ixn[i]]=1 iP = P.I Qv = P*Q*iP Rv = P*R*iP # new fluid process censored to states + and - iQv00 = la.pinv(-Qv[:Nz,:Nz]) Qbar = Qv[Nz:, Nz:] + Qv[Nz:,:Nz]*iQv00*Qv[:Nz,Nz:] absRi = Diag(np.abs(1./np.diag(Rv[Nz:,Nz:]))) Qz = absRi * Qbar Psi, K, U = FluidFundamentalMatrices (Qz[:Np,:Np], Qz[:Np,Np:], Qz[Np:,:Np], Qz[Np:,Np:], "PKU", prec) # closing matrix Pm = np.hstack((ml.eye(Np), Psi)) * absRi iCn = absRi[Np:,Np:] iCp = absRi[:Np,:Np] clo = np.hstack(((iCp*Qv[Nz:Nz+Np,:Nz]+Psi*iCn*Qv[Nz+Np:,:Nz])*iQv00, Pm)) if len(Q0)==0: # regular boundary behavior clo = clo * P # go back the the original state ordering # calculate boundary vector Ua = iCn*Qv[Nz+Np:,:Nz]*iQv00*ml.ones((Nz,1)) + iCn*ml.ones((Nn,1)) + Qz[Np:,:Np]*la.inv(-K)*clo*ml.ones((Nz+Np+Nn,1)) pm = Linsolve (ml.hstack((U,Ua)).T, ml.hstack((ml.zeros((1,Nn)),ml.ones((1,1)))).T).T # create the result mass0 = ml.hstack((pm*iCn*Qv[Nz+Np:,:Nz]*iQv00, ml.zeros((1,Np)), pm*iCn))*P ini = pm*Qz[Np:,:Np] else: # solve a linear system for ini(+), pm(-) and pm(0) Q0v = P*Q0*iP M = ml.vstack((-clo*Rv, Q0v[Nz+Np:,:], Q0v[:Nz,:])) Ma = ml.vstack((np.sum(la.inv(-K)*clo,1), ml.ones((Nz+Nn,1)))) sol = Linsolve (ml.hstack((M,Ma)).T, ml.hstack((ml.zeros((1,N)),ml.ones((1,1)))).T).T; ini = sol[:,:Np] clo = clo * P mass0 = ml.hstack((sol[:,Np+Nn:], ml.zeros((1,Np)), sol[:,Np:Np+Nn]))*P return mass0, ini, K, clo
def FluidSolve (Fpp, Fpm, Fmp, Fmm, prec=1e-14): """ Returns the parameters of the matrix-exponentially distributed stationary distribution of a canonical Markovian fluid model. The canonical Markov fluid model is defined by the matrix blocks of the generator of the background Markov chain partitioned according to the sign of the associated fluid rates (i.e., there are "+" and "-" states). Using the returned 4 parameters the stationary solution can be obtained as follows. The probability that the fluid level is zero while being in different states of the background process is given by vector mass0. The density that the fluid level is x while being in different states of the background process is .. math:: \pi(x)=ini\cdot e^{K x}\cdot clo. Parameters ---------- Fpp : matrix, shape (Np,Np) The matrix of transition rates between states having positive fluid rates Fpm : matrix, shape (Np,Nm) The matrix of transition rates where the source state has a positive, the destination has a negative fluid rate associated. Fpm : matrix, shape (Nm,Np) The matrix of transition rates where the source state has a negative, the destination has a positive fluid rate associated. Fpp : matrix, shape (Nm,Nm) The matrix of transition rates between states having negative fluid rates precision : double, optional Numerical precision for computing the fundamental matrix. The default value is 1e-14 Returns ------- mass0 : matrix, shape (1,Np+Nm) The stationary probability vector of zero level ini : matrix, shape (1,Np) The initial vector of the stationary density K : matrix, shape (Np,Np) The matrix parameter of the stationary density clo : matrix, shape (Np,Np+Nm) The closing matrix of the stationary density """ Psi, K, U = FluidFundamentalMatrices (Fpp, Fpm, Fmp, Fmm, "PKU", prec) mass0 = CTMCSolve(U) nr = np.sum(mass0) + 2.0*np.sum(mass0*Fmp*-K.I) return ml.hstack((ml.zeros((1,Fpp.shape[0])),mass0/nr)), mass0*Fmp/nr, K, ml.hstack((ml.eye(Fpp.shape[0]), Psi))
def MMAPPH1PRPR(D, sigma, S, *argv): """ Returns various performane measures of a MMAP[K]/PH[K]/1 preemptive resume priority queue, see [1]_. Parameters ---------- D : list of matrices of shape (N,N), length (K+1) The D0...DK matrices of the arrival process. D1 corresponds to the lowest, DK to the highest priority. sigma : list of row vectors, length (K) The list containing the initial probability vectors of the service time distributions of the various customer types. The length of the vectors does not have to be the same. S : list of square matrices, length (K) The transient generators of the phase type distributions representing the service time of the jobs belonging to various types. further parameters : The rest of the function parameters specify the options and the performance measures to be computed. The supported performance measures and options in this function are: +----------------+--------------------+----------------------------------------+ | Parameter name | Input parameters | Output | +================+====================+========================================+ | "ncMoms" | Number of moments | The moments of the number of customers | +----------------+--------------------+----------------------------------------+ | "ncDistr" | Upper limit K | The distribution of the number of | | | | customers from level 0 to level K-1 | +----------------+--------------------+----------------------------------------+ | "stMoms" | Number of moments | The sojourn time moments | +----------------+--------------------+----------------------------------------+ | "stDistr" | A vector of points | The sojourn time distribution at the | | | | requested points (cummulative, cdf) | +----------------+--------------------+----------------------------------------+ | "prec" | The precision | Numerical precision used as a stopping | | | | condition when solving the Riccati and | | | | the matrix-quadratic equations | +----------------+--------------------+----------------------------------------+ | "erlMaxOrder" | Integer number | The maximal Erlang order used in the | | | | erlangization procedure. The default | | | | value is 200. | +----------------+--------------------+----------------------------------------+ | "classes" | Vector of integers | Only the performance measures | | | | belonging to these classes are | | | | returned. If not given, all classes | | | | are analyzed. | +----------------+--------------------+----------------------------------------+ (The quantities related to the number of customers in the system include the customer in the server, and the sojourn time related quantities include the service times as well) Returns ------- Ret : list of the performance measures Each entry of the list corresponds to a performance measure requested. Each entry is a matrix, where the columns belong to the various job types. If there is just a single item, then it is not put into a list. References ---------- .. [1] G. Horvath, "Efficient analysis of the MMAP[K]/PH[K]/1 priority queue", European Journal of Operational Research, 246(1), 128-139, 2015. """ K = len(D) - 1 # parse options eaten = [] erlMaxOrder = 200 precision = 1e-14 classes = np.arange(0, K) for i in range(len(argv)): if argv[i] == "prec": precision = argv[i + 1] eaten.append(i) eaten.append(i + 1) elif argv[i] == "erlMaxOrder": erlMaxOrder = argv[i + 1] eaten.append(i) eaten.append(i + 1) elif argv[i] == "classes": classes = np.array(argv[i + 1]) - 1 eaten.append(i) eaten.append(i + 1) if butools.checkInput and not CheckMMAPRepresentation(D): raise Exception( 'MMAPPH1PRPR: The arrival process is not a valid MMAP representation!' ) if butools.checkInput: for k in range(K): if not CheckPHRepresentation(sigma[k], S[k]): raise Exception( 'MMAPPH1PRPR: the vector and matrix describing the service times is not a valid PH representation!' ) # some preparation D0 = D[0] N = D0.shape[0] I = ml.eye(N) sD = ml.zeros((N, N)) for Di in D: sD += Di s = [] M = np.empty(K) for i in range(K): s.append(np.sum(-S[i], 1)) M[i] = sigma[i].size Ret = [] for k in classes: # step 1. solution of the workload process of the system # ====================================================== sM = np.sum(M[k:K]) Qwmm = ml.matrix(D0) for i in range(k): Qwmm += D[i + 1] Qwpm = ml.zeros((N * sM, N)) Qwmp = ml.zeros((N, N * sM)) Qwpp = ml.zeros((N * sM, N * sM)) kix = 0 for i in range(k, K): Qwmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i]) Qwpm[kix:kix + N * M[i], :] = np.kron(I, s[i]) Qwpp[kix:kix + N * M[i], :][:, kix:kix + N * M[i]] = np.kron(I, S[i]) kix += N * M[i] # calculate fundamental matrices Psiw, Kw, Uw = FluidFundamentalMatrices(Qwpp, Qwpm, Qwmp, Qwmm, 'PKU', precision) # calculate boundary vector Ua = ml.ones((N, 1)) + 2 * np.sum(Qwmp * (-Kw).I, 1) pm = Linsolve( ml.hstack((Uw, Ua)).T, ml.hstack((ml.zeros((1, N)), ml.ones((1, 1)))).T).T Bw = ml.zeros((N * sM, N)) Bw[0:N * M[k], :] = np.kron(I, s[k]) kappa = pm * Qwmp / np.sum(pm * Qwmp * (-Kw).I * Bw) if k < K - 1: # step 2. construct fluid model for the remaining sojourn time process # ==================================================================== # (for each class except the highest priority) Qsmm = ml.matrix(D0) for i in range(k + 1): Qsmm += D[i + 1] Np = Kw.shape[0] Qspm = ml.zeros((Np + N * np.sum(M[k + 1:]), N)) Qsmp = ml.zeros((N, Np + N * np.sum(M[k + 1:]))) Qspp = ml.zeros( (Np + N * np.sum(M[k + 1:]), Np + N * np.sum(M[k + 1:]))) Qspp[:Np, :Np] = Kw Qspm[:Np, :N] = Bw kix = Np for i in range(k + 1, K): Qsmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i]) Qspm[kix:kix + N * M[i], :] = np.kron(I, s[i]) Qspp[kix:kix + N * M[i], kix:kix + N * M[i]] = np.kron(I, S[i]) kix += N * M[i] inis = ml.hstack((kappa, ml.zeros((1, N * np.sum(M[k + 1:]))))) Psis = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, Qsmm, 'P', precision) # step 3. calculate the performance measures # ========================================== argIx = 0 while argIx < len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx] == "stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx + 1] Pn = [Psis] rtMoms = [] for n in range(1, numOfSTMoms + 1): A = Qspp + Psis * Qsmp B = Qsmm + Qsmp * Psis C = -2 * n * Pn[n - 1] bino = 1 for i in range(1, n): bino = bino * (n - i + 1) / i C += bino * Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) rtMoms.append(np.sum(inis * P * (-1)**n) / 2**n) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx + 1] res = [] for t in stCdfPoints: L = erlMaxOrder lambd = L / t / 2 Psie = FluidFundamentalMatrices( Qspp - lambd * ml.eye(Qspp.shape[0]), Qspm, Qsmp, Qsmm - lambd * ml.eye(Qsmm.shape[0]), 'P', precision) Pn = [Psie] pr = np.sum(inis * Psie) for n in range(1, L): A = Qspp + Psie * Qsmp - lambd * ml.eye( Qspp.shape[0]) B = Qsmm + Qsmp * Psie - lambd * ml.eye( Qsmm.shape[0]) C = 2 * lambd * Pn[n - 1] for i in range(1, n): C += Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) pr += np.sum(inis * P) res.append(pr) Ret.append(np.array(res)) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx + 1] # first calculate it at departure instants QLDPn = [Psis] dqlMoms = [] for n in range(1, numOfQLMoms + 1): A = Qspp + Psis * Qsmp B = Qsmm + Qsmp * Psis C = n * QLDPn[n - 1] * D[k + 1] bino = 1 for i in range(1, n): bino = bino * (n - i + 1) / i C = C + bino * QLDPn[i] * Qsmp * QLDPn[n - i] P = la.solve_sylvester(A, B, -C) QLDPn.append(P) dqlMoms.append(np.sum(inis * P)) dqlMoms = MomsFromFactorialMoms(dqlMoms) # now calculate it at random time instance pi = CTMCSolve(sD) lambdak = np.sum(pi * D[k + 1]) QLPn = [pi] qlMoms = [] iTerm = (ml.ones((N, 1)) * pi - sD).I for n in range(1, numOfQLMoms + 1): sumP = np.sum(inis * QLDPn[n]) + n * ( inis * QLDPn[n - 1] - QLPn[n - 1] * D[k + 1] / lambdak) * iTerm * np.sum(D[k + 1], 1) P = sumP * pi + n * (QLPn[n - 1] * D[k + 1] - inis * QLDPn[n - 1] * lambdak) * iTerm QLPn.append(P) qlMoms.append(np.sum(P)) qlMoms = MomsFromFactorialMoms(qlMoms) Ret.append(qlMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx + 1] sDk = ml.matrix(D0) for i in range(k): sDk += D[i + 1] # first calculate it at departure instants Psid = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, sDk, 'P', precision) Pn = [Psid] dqlProbs = inis * Psid for n in range(1, numOfQLProbs): A = Qspp + Psid * Qsmp B = sDk + Qsmp * Psid C = Pn[n - 1] * D[k + 1] for i in range(1, n): C += Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) dqlProbs = ml.vstack((dqlProbs, inis * P)) # now calculate it at random time instance pi = CTMCSolve(sD) lambdak = np.sum(pi * D[k + 1]) iTerm = -(sD - D[k + 1]).I qlProbs = lambdak * dqlProbs[0, :] * iTerm for n in range(1, numOfQLProbs): P = (qlProbs[n - 1, :] * D[k + 1] + lambdak * (dqlProbs[n, :] - dqlProbs[n - 1, :])) * iTerm qlProbs = ml.vstack((qlProbs, P)) qlProbs = np.sum(qlProbs, 1).A.flatten() Ret.append(qlProbs) argIx += 1 else: raise Exception("MMAPPH1PRPR: Unknown parameter " + str(argv[argIx])) argIx += 1 elif k == K - 1: # step 3. calculate the performance measures # ========================================== argIx = 0 while argIx < len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx] == "stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx + 1] rtMoms = [] for i in range(1, numOfSTMoms + 1): rtMoms.append( np.sum( math.factorial(i) * kappa * (-Kw).I**(i + 1) * Bw)) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx + 1] rtDistr = [] for t in stCdfPoints: rtDistr.append( np.sum(kappa * (-Kw).I * (ml.eye(Kw.shape[0]) - la.expm(Kw * t)) * Bw)) Ret.append(np.array(rtDistr)) argIx += 1 elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or argv[argIx] == "ncDistr"): L = np.kron(sD - D[k + 1], ml.eye(M[k])) + np.kron( ml.eye(N), S[k]) B = np.kron(ml.eye(N), s[k] * sigma[k]) F = np.kron(D[k + 1], ml.eye(M[k])) L0 = np.kron(sD - D[k + 1], ml.eye(M[k])) R = QBDFundamentalMatrices(B, L, F, 'R', precision) p0 = CTMCSolve(L0 + R * B) p0 = p0 / np.sum(p0 * (ml.eye(R.shape[0]) - R).I) if argv[argIx] == "ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx + 1] qlMoms = [] for i in range(1, numOfQLMoms + 1): qlMoms.append( np.sum( math.factorial(i) * p0 * R**i * (ml.eye(R.shape[0]) - R).I**(i + 1))) Ret.append(MomsFromFactorialMoms(qlMoms)) elif argv[argIx] == "ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx + 1] qlProbs = [np.sum(p0)] for i in range(1, numOfQLProbs): qlProbs.append(np.sum(p0 * R**i)) Ret.append(np.array(qlProbs)) argIx += 1 else: raise Exception("MMAPPH1PRPR: Unknown parameter " + str(argv[argIx])) argIx += 1 if len(Ret) == 1: return Ret[0] else: return Ret
def CanonicalFromDPH3(alpha, A, prec=1e-14): """ Returns the canonical form of an order-3 discrete phase-type distribution. Parameters ---------- alpha : matrix, shape (1,3) Initial vector of the discrete phase-type distribution A : matrix, shape (3,3) Transition probability matrix of the discrete phase-type distribution prec : double, optional Numerical precision for checking the input, default value is 1e-14 Returns ------- beta : matrix, shape (1,3) The initial probability vector of the canonical form B : matrix, shape (3,3) Transition probability matrix of the canonical form """ if butools.checkInput and not CheckMGRepresentation(alpha, A, prec): raise Exception( "CanonicalFromDPH3: Input is not a valid DPH representation!") if butools.checkInput and (A.shape[0] != 3 or A.shape[1] != 3): raise Exception("CanonicalFromDPH3: Dimension must be 3!") ev = la.eigvals(A) ix = np.argsort(-np.abs(np.real(ev))) lambd = ev[ix] eye = ml.eye(3) a0 = -lambd[0] * lambd[1] * lambd[2] a1 = lambd[0] * lambd[1] + lambd[0] * lambd[2] + lambd[1] * lambd[2] a2 = -lambd[0] - lambd[1] - lambd[2] e = ml.matrix([[1, 1, 1]]).T if np.real(lambd[0]) > 0 and np.real(lambd[1]) >= 0 and np.real( lambd[2]) >= 0: #PPP case alphaout, A2 = CanonicalFromPH3(alpha, A - eye, prec) Aout = A2 + eye elif np.real(lambd[0]) > 0 and np.real(lambd[1]) >= 0 and np.real( lambd[2]) < 0: #PPN case x1 = lambd[0] x2 = lambd[1] + lambd[2] x3 = lambd[1] * lambd[2] / (lambd[1] + lambd[2] - 1) Aout = ml.matrix([[x1, 1 - x1, 0], [0, x2, 1 - x2], [0, x3, 0]]) b3 = 1 / (1 - x3) * (e - A * e) b2 = 1 / (1 - x2) * A * b3 b1 = e - b2 - b3 B = ml.hstack((b1, b2, b3)) alphaout = alpha * B elif np.real(lambd[0]) > 0 and np.real(lambd[1]) < 0 and np.real( lambd[2]) >= 0: #PNP case x1 = -a2 x2 = (a0 - a1 * a2) / (a2 * (1 + a2)) x3 = a0 * (1 + a2) / (a0 - a2 - a1 * a2 - a2**2) Aout = ml.matrix([[x1, 1 - x1, 0], [x2, 0, 1 - x2], [0, x3, 0]]) b3 = 1 / (1 - x3) * (e - A * e) b2 = 1 / (1 - x2) * A * b3 b1 = e - b2 - b3 if alpha * b1 >= 0: B = ml.hstack((b1, b2, b3)) alphaout = alpha * B else: #Set the initial vector first element to 0 x33 = 0 a1 = -1 while x33 <= 1: [a1, x1, x2, x3, B] = firstInitElem(x33, lambd, alpha, A) if a1 >= 0 and x1 >= 0 and x2 >= 0 and x3 >= 0 and x3 + x33 < 1: break x33 = x33 + 0.01 if a1 >= 0: Aout = ml.matrix([[x1, 1 - x1, 0], [x2, 0, 1 - x2], [0, x3, x33]]) alphaout = alpha * B else: #PNP+ x1 = lambd[2] x2 = lambd[0] + lambd[1] x3 = lambd[0] * lambd[1] / (lambd[0] + lambd[1] - 1) Aout = ml.matrix([[x1, 0, 0], [0, x2, 1 - x2], [0, x3, 0]]) p1 = alpha * (e - A * e) p2 = alpha * A * (e - A * e) d1 = (1 - lambd[0]) * ((1 - lambd[1]) * (1 - lambd[2]) + (-1 + lambd[1] + lambd[2]) * p1 - p2) / ((lambd[0] - lambd[1]) * (lambd[0] - lambd[2])) d2 = (lambd[1] - 1) * ((1 - lambd[0]) * (1 - lambd[2]) + (-1 + lambd[0] + lambd[2]) * p1 - p2) / ((lambd[0] - lambd[1]) * (lambd[1] - lambd[2])) d3 = (lambd[2] - 1) * ((1 - lambd[0]) * (1 - lambd[1]) + (-1 + lambd[0] + lambd[1]) * p1 - p2) / ((lambd[1] - lambd[2]) * (lambd[2] - lambd[0])) alphaout = ml.matrix([[ d3 / (1 - lambd[2]), (d1 * lambd[0] + d2 * lambd[1]) / ((1 - lambd[0]) * (1 - lambd[1])), (d1 + d2) * (1 - lambd[0] - lambd[1]) / ((1 - lambd[0]) * (1 - lambd[1])) ]]) if np.min(alphaout) < 0 or np.min(np.min(Aout)) < 0: raise Exception("DPH3Canonical: Unhandled PNP case!") elif np.real(lambd[0]) > 0 and np.real(lambd[1]) < 0 and np.real( lambd[2]) < 0: #PNN case if np.all(np.isreal(lambd)) or np.abs( lambd[1])**2 <= 2 * lambd[0] * (-np.real(lambd[1])): x1 = -a2 x2 = -a1 / (1 + a2) x3 = -a0 / (1 + a1 + a2) Aout = ml.matrix([[x1, 1 - x1, 0], [x2, 0, 1 - x2], [x3, 0, 0]]) b3 = 1 / (1 - x3) * (e - A * e) b2 = 1 / (1 - x2) * A * b3 b1 = e - b2 - b3 B = ml.hstack((b1, b2, b3)) alphaout = alpha * B else: [alphaout, A2] = CanonicalFromPH3(alpha, A - eye, prec) Aout = A2 + eye return (np.real(alphaout), np.real(Aout))
def SPIRIT(streams, energyThresh, lamb, evalMetrics): # Make if type(streams) == np.ndarray: streams_iter = iter(streams) # Max No. Streams if streams.ndim == 1: streams = np.expand_dims(streams, axis=1) num_streams = streams.shape[1] else: num_streams = streams.shape[1] count_over = 0 count_under = 0 #=============================================================================== # Initalise k, w and d, lamb #=============================================================================== k = 1 # Hidden Variables, initialise to one # Weights pc_weights = npm.zeros(num_streams) pc_weights[0, 0] = 1 # initialise outputs res = {} all_weights = [] k_hist = [] anomalies = [] x_dash = npm.zeros((1,num_streams)) Eng = mat([0.00000001, 0.00000001]) E_xt = 0 # Energy of X at time t E_rec_i = mat([0.000000000000001]) # Energy of reconstruction Y = npm.zeros(num_streams) timeSteps = streams.shape[0] #=============================================================================== # Main Loop #=============================================================================== for t in range(1, timeSteps + 1): # t = 1,...,200 k_hist.append(k) x_t_plus_1 = mat(streams_iter.next()) # Read in next signals d_i = E_rec_i * t # Step 1 - Update Weights pc_weights, y_t_i, error = track_W(x_t_plus_1, k, pc_weights, d_i, num_streams, lamb) # Record hidden variables padding = num_streams - k y_bar_t = npm.hstack((y_t_i, mat([nan] * padding))) Y = npm.vstack((Y,y_bar_t)) # Record Weights all_weights.append(pc_weights) # Record reconstrunted z and RSRE x_dash = npm.vstack((x_dash, y_t_i * pc_weights)) # Record RSRE if t == 1: top = 0.0 bot = 0.0 top = top + (norm(x_t_plus_1 - x_dash) ** 2 ) bot = bot + (norm(x_t_plus_1) ** 2) new_RSRE = top / bot if t == 1: RSRE = new_RSRE else: RSRE = npm.vstack((RSRE, new_RSRE)) ### FOR EVALUATION ### #deviation from truth if evalMetrics == 'T' : Qt = pc_weights.T if t == 1 : res['subspace_error'] = npm.zeros((timeSteps,1)) res['orthog_error'] = npm.zeros((timeSteps,1)) res['angle_error'] = npm.zeros((timeSteps,1)) Cov_mat = npm.zeros([num_streams,num_streams]) # Calculate Covarentce Matrix of data up to time t Cov_mat = lamb * Cov_mat + npm.dot(x_t_plus_1, x_t_plus_1.T) # Get eigenvalues and eigenvectors W , V = eig(Cov_mat) # Use this to sort eigenVectors in according to deccending eigenvalue eig_idx = W.argsort() # Get sort index eig_idx = eig_idx[::-1] # Reverse order (default is accending) # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted). V_k = V[:, eig_idx[:k]] # Calculate subspace error C = npm.dot(V_k , V_k.T) - npm.dot(Qt , Qt.T) res['subspace_error'][t-1,0] = 10 * np.log10(npm.trace(npm.dot(C.T , C))) #frobenius norm in dB # Calculate angle between projection matrixes D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k) eigVal, eigVec = eig(D) angle = npm.arccos(np.sqrt(max(eigVal))) res['angle_error'][t-1,0] = angle # Calculate deviation from orthonormality F = npm.dot(Qt.T , Qt) - npm.eye(k) res['orthog_error'][t-1,0] = 10 * np.log10(npm.trace(npm.dot(F.T , F))) #frobenius norm in dB # Step 2 - Update Energy estimate E_xt = ((lamb * (t-1) * E_xt) + norm(x_t_plus_1) ** 2) / t for i in range(k): E_rec_i[0, i] = ((lamb * (t-1) * E_rec_i[0, i]) + (y_t_i[0, i] ** 2)) / t # Step 3 - Estimate the retained energy E_retained = npm.sum(E_rec_i,1) # Record Energy Eng_new = npm.hstack((E_xt, E_retained[0,0])) Eng = npm.vstack((Eng, Eng_new)) if E_retained < energyThresh[0] * E_xt: if k != num_streams: k = k + 1 # Initalise Ek+1 <-- 0 E_rec_i = npm.hstack((E_rec_i, mat([0]))) # Initialise W_i+1 new_weight_vec = npm.zeros(num_streams) new_weight_vec[0, k-1] = 1 pc_weights = npm.vstack((pc_weights, new_weight_vec)) anomalies.append(t -1) else: count_over += 1 elif E_retained > energyThresh[1] * E_xt: if k > 1 : k = k - 1 # discard w_k and error pc_weights = delete(pc_weights, -1, 0) # Discard E_rec_i[k] E_rec_i = delete(E_rec_i, -1) else: count_under += 1 # Data Stores res2 = {'hidden' : Y, # Array for hidden Variables 'weights' : all_weights, 'E_t' : Eng[:,0], # total energy of data 'E_dash_t' : Eng[:,1], # hidden var energy 'e_ratio' : np.divide(Eng[:,1], Eng[:,0]), # Energy ratio 'RSRE' : RSRE, # Relative squared Reconstruction error 'recon' : x_dash, # reconstructed data 'r_hist' : k_hist, # history of r values 'anomalies' : anomalies} res.update(res2) return res, all_weights
def MMAPPH1FCFS(D, sigma, S, *argv): """ Returns various performane measures of a MMAP[K]/PH[K]/1 first-come-first-serve queue, see [1]_. Parameters ---------- D : list of matrices of shape (N,N), length (K+1) The D0...DK matrices of the arrival process. sigma : list of row vectors, length (K) The list containing the initial probability vectors of the service time distributions of the various customer types. The length of the vectors does not have to be the same. S : list of square matrices, length (K) The transient generators of the phase type distributions representing the service time of the jobs belonging to various types. further parameters : The rest of the function parameters specify the options and the performance measures to be computed. The supported performance measures and options in this function are: +----------------+--------------------+----------------------------------------+ | Parameter name | Input parameters | Output | +================+====================+========================================+ | "ncMoms" | Number of moments | The moments of the number of customers | +----------------+--------------------+----------------------------------------+ | "ncDistr" | Upper limit K | The distribution of the number of | | | | customers from level 0 to level K-1 | +----------------+--------------------+----------------------------------------+ | "stMoms" | Number of moments | The sojourn time moments | +----------------+--------------------+----------------------------------------+ | "stDistr" | A vector of points | The sojourn time distribution at the | | | | requested points (cummulative, cdf) | +----------------+--------------------+----------------------------------------+ | "stDistrME" | None | The vector-matrix parameters of the | | | | matrix-exponentially distributed | | | | sojourn time distribution | +----------------+--------------------+----------------------------------------+ | "stDistrPH" | None | The vector-matrix parameters of the | | | | matrix-exponentially distributed | | | | sojourn time distribution, converted | | | | to a continuous PH representation | +----------------+--------------------+----------------------------------------+ | "prec" | The precision | Numerical precision used as a stopping | | | | condition when solving the Riccati | | | | equation | +----------------+--------------------+----------------------------------------+ | "classes" | Vector of integers | Only the performance measures | | | | belonging to these classes are | | | | returned. If not given, all classes | | | | are analyzed. | +----------------+--------------------+----------------------------------------+ (The quantities related to the number of customers in the system include the customer in the server, and the sojourn time related quantities include the service times as well) Returns ------- Ret : list of the performance measures Each entry of the list corresponds to a performance measure requested. Each entry is a matrix, where the columns belong to the various job types. If there is just a single item, then it is not put into a list. References ---------- .. [1] Qiming He, "Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: Age process, sojourn times, and queue lengths", Journal of Systems Science and Complexity, 25(1), pp 133-155, 2012. """ K = len(D) - 1 # parse options eaten = [] precision = 1e-14 classes = np.arange(0, K) for i in range(len(argv)): if argv[i] == "prec": precision = argv[i + 1] eaten.append(i) eaten.append(i + 1) elif argv[i] == "classes": classes = np.array(argv[i + 1]) - 1 eaten.append(i) eaten.append(i + 1) if butools.checkInput and not CheckMMAPRepresentation(D): raise Exception( 'MMAPPH1FCFS: The arrival process is not a valid MMAP representation!' ) if butools.checkInput: for k in range(K): if not CheckPHRepresentation(sigma[k], S[k]): raise Exception( 'MMAPPH1FCFS: the vector and matrix describing the service times is not a valid PH representation!' ) # some preparation D0 = D[0] N = D0.shape[0] Ia = ml.eye(N) Da = ml.zeros((N, N)) for q in range(K): Da += D[q + 1] theta = CTMCSolve(D0 + Da) beta = [CTMCSolve(S[k] + ml.sum(-S[k], 1) * sigma[k]) for k in range(K)] lambd = [np.sum(theta * D[k + 1]) for k in range(K)] mu = [np.sum(beta[k] * (-S[k])) for k in range(K)] Nsk = [S[k].shape[0] for k in range(K)] ro = np.sum(np.array(lambd) / np.array(mu)) alpha = theta * Da / sum(lambd) D0i = (-D0).I Sa = S[0] sa = [ml.zeros(sigma[0].shape)] * K sa[0] = sigma[0] ba = [ml.zeros(beta[0].shape)] * K ba[0] = beta[0] sv = [ml.zeros((Nsk[0], 1))] * K sv[0] = ml.sum(-S[0], 1) Pk = [D0i * D[q + 1] for q in range(K)] for k in range(1, K): Sa = la.block_diag(Sa, S[k]) for q in range(K): if q == k: sa[q] = ml.hstack((sa[q], sigma[k])) ba[q] = ml.hstack((ba[q], beta[k])) sv[q] = ml.vstack((sv[q], -np.sum(S[k], 1))) else: sa[q] = ml.hstack((sa[q], ml.zeros(sigma[k].shape))) ba[q] = ml.hstack((ba[q], ml.zeros(beta[k].shape))) sv[q] = ml.vstack((sv[q], ml.zeros((Nsk[k], 1)))) Sa = ml.matrix(Sa) P = D0i * Da iVec = ml.kron(D[1], sa[0]) for k in range(1, K): iVec += ml.kron(D[k + 1], sa[k]) Ns = Sa.shape[0] Is = ml.eye(Ns) # step 1. solve the age process of the queue # ========================================== # solve Y0 and calculate T Y0 = FluidFundamentalMatrices(ml.kron(Ia, Sa), ml.kron(Ia, -ml.sum(Sa, 1)), iVec, D0, "P", precision) T = ml.kron(Ia, Sa) + Y0 * iVec # calculate pi0 and v0 pi0 = ml.zeros((1, T.shape[0])) for k in range(K): pi0 += ml.kron(theta * D[k + 1], ba[k] / mu[k]) pi0 = -pi0 * T iT = (-T).I oa = ml.ones((N, 1)) # step 2. calculate performance measures # ====================================== Ret = [] for k in classes: argIx = 0 clo = iT * ml.kron(oa, sv[k]) while argIx < len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx] == "stMoms": numOfSTMoms = argv[argIx + 1] rtMoms = [] for m in range(1, numOfSTMoms + 1): rtMoms.append( math.factorial(m) * np.sum(pi0 * iT**m * clo / (pi0 * clo))) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "stDistr": stCdfPoints = argv[argIx + 1] cdf = [] for t in stCdfPoints: pr = 1 - np.sum(pi0 * la.expm(T * t) * clo / (pi0 * clo)) cdf.append(pr) Ret.append(np.array(cdf)) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "stDistrME": Bm = SimilarityMatrixForVectors(clo / (pi0 * clo), ml.ones((N * Ns, 1))) Bmi = Bm.I A = Bm * T * Bmi alpha = pi0 * Bmi Ret.append(alpha) Ret.append(A) elif type(argv[argIx]) is str and argv[argIx] == "stDistrPH": vv = pi0 * iT ix = np.arange(N * Ns) nz = ix[vv.flat > precision] delta = Diag(vv[:, nz]) cl = -T * clo / (pi0 * clo) alpha = cl[nz, :].T * delta A = delta.I * T[nz, :][:, nz].T * delta Ret.append(alpha) Ret.append(A) elif type(argv[argIx]) is str and argv[argIx] == "ncDistr": numOfQLProbs = argv[argIx + 1] argIx += 1 values = np.empty(numOfQLProbs) jm = ml.zeros((Ns, 1)) jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1 jmc = ml.ones((Ns, 1)) jmc[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 0 LmCurr = la.solve_sylvester(T, ml.kron(D0 + Da - D[k + 1], Is), -ml.eye(N * Ns)) values[0] = 1 - ro + np.sum(pi0 * LmCurr * ml.kron(oa, jmc)) for i in range(1, numOfQLProbs): LmPrev = LmCurr LmCurr = la.solve_sylvester( T, ml.kron(D0 + Da - D[k + 1], Is), -LmPrev * ml.kron(D[k + 1], Is)) values[i] = np.sum(pi0 * LmCurr * ml.kron(oa, jmc) + pi0 * LmPrev * ml.kron(oa, jm)) Ret.append(values) elif type(argv[argIx]) is str and argv[argIx] == "ncMoms": numOfQLMoms = argv[argIx + 1] argIx += 1 jm = ml.zeros((Ns, 1)) jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k + 1]), :] = 1 ELn = [ la.solve_sylvester(T, ml.kron(D0 + Da, Is), -ml.eye(N * Ns)) ] qlMoms = [] for n in range(1, numOfQLMoms + 1): bino = 1 Btag = ml.zeros((N * Ns, N * Ns)) for i in range(n): Btag += bino * ELn[i] bino *= (n - i) / (i + 1) ELn.append( la.solve_sylvester(T, ml.kron(D0 + Da, Is), -Btag * ml.kron(D[k + 1], Is))) qlMoms.append( np.sum(pi0 * ELn[n]) + np.sum(pi0 * Btag * ml.kron(oa, jm))) Ret.append(qlMoms) else: raise Exception("MMAPPH1FCFS: Unknown parameter " + str(argv[argIx])) argIx += 1 if len(Ret) == 1: return Ret[0] else: return Ret
def MMAPPH1NPPR(D, sigma, S, *argv): """ Returns various performane measures of a continuous time MMAP[K]/PH[K]/1 non-preemptive priority queue, see [1]_. Parameters ---------- D : list of matrices of shape (N,N), length (K+1) The D0...DK matrices of the arrival process. D1 corresponds to the lowest, DK to the highest priority. sigma : list of row vectors, length (K) The list containing the initial probability vectors of the service time distributions of the various customer types. The length of the vectors does not have to be the same. S : list of square matrices, length (K) The transient generators of the phase type distributions representing the service time of the jobs belonging to various types. further parameters : The rest of the function parameters specify the options and the performance measures to be computed. The supported performance measures and options in this function are: +----------------+--------------------+----------------------------------------+ | Parameter name | Input parameters | Output | +================+====================+========================================+ | "ncMoms" | Number of moments | The moments of the number of customers | +----------------+--------------------+----------------------------------------+ | "ncDistr" | Upper limit K | The distribution of the number of | | | | customers from level 0 to level K-1 | +----------------+--------------------+----------------------------------------+ | "stMoms" | Number of moments | The sojourn time moments | +----------------+--------------------+----------------------------------------+ | "stDistr" | A vector of points | The sojourn time distribution at the | | | | requested points (cummulative, cdf) | +----------------+--------------------+----------------------------------------+ | "prec" | The precision | Numerical precision used as a stopping | | | | condition when solving the Riccati and | | | | the matrix-quadratic equations | +----------------+--------------------+----------------------------------------+ | "erlMaxOrder" | Integer number | The maximal Erlang order used in the | | | | erlangization procedure. The default | | | | value is 200. | +----------------+--------------------+----------------------------------------+ | "classes" | Vector of integers | Only the performance measures | | | | belonging to these classes are | | | | returned. If not given, all classes | | | | are analyzed. | +----------------+--------------------+----------------------------------------+ (The quantities related to the number of customers in the system include the customer in the server, and the sojourn time related quantities include the service times as well) Returns ------- Ret : list of the performance measures Each entry of the list corresponds to a performance measure requested. Each entry is a matrix, where the columns belong to the various job types. If there is just a single item, then it is not put into a list. References ---------- .. [1] G. Horvath, "Efficient analysis of the MMAP[K]/PH[K]/1 priority queue", European Journal of Operational Research, 246(1), 128-139, 2015. """ K = len(D) - 1 # parse options eaten = [] erlMaxOrder = 200 precision = 1e-14 classes = np.arange(0, K) for i in range(len(argv)): if argv[i] == "prec": precision = argv[i + 1] eaten.append(i) eaten.append(i + 1) elif argv[i] == "erlMaxOrder": erlMaxOrder = argv[i + 1] eaten.append(i) eaten.append(i + 1) elif argv[i] == "classes": classes = np.array(argv[i + 1]) - 1 eaten.append(i) eaten.append(i + 1) if butools.checkInput and not CheckMMAPRepresentation(D): raise Exception( 'MMAPPH1PRPR: The arrival process is not a valid MMAP representation!' ) if butools.checkInput: for k in range(K): if not CheckPHRepresentation(sigma[k], S[k]): raise Exception( 'MMAPPH1PRPR: the vector and matrix describing the service times is not a valid PH representation!' ) # some preparation D0 = D[0] N = D0.shape[0] I = ml.eye(N) sD = ml.zeros((N, N)) for Di in D: sD += Di s = [] M = np.empty(K) for i in range(K): s.append(np.sum(-S[i], 1)) M[i] = sigma[i].size # step 1. solution of the workload process of the joint queue # =========================================================== sM = np.sum(M) Qwmm = ml.matrix(D0) Qwpm = ml.zeros((N * sM, N)) Qwmp = ml.zeros((N, N * sM)) Qwpp = ml.zeros((N * sM, N * sM)) kix = 0 for i in range(K): Qwmp[:, kix:kix + N * M[i]] = np.kron(D[i + 1], sigma[i]) Qwpm[kix:kix + N * M[i], :] = np.kron(I, s[i]) Qwpp[kix:kix + N * M[i], :][:, kix:kix + N * M[i]] = np.kron(I, S[i]) kix += N * M[i] # calculate fundamental matrices Psiw, Kw, Uw = FluidFundamentalMatrices(Qwpp, Qwpm, Qwmp, Qwmm, 'PKU', precision) # calculate boundary vector Ua = ml.ones((N, 1)) + 2 * np.sum(Qwmp * (-Kw).I, 1) pm = Linsolve( ml.hstack((Uw, Ua)).T, ml.hstack((ml.zeros((1, N)), ml.ones((1, 1)))).T).T ro = ((1.0 - np.sum(pm)) / 2.0) / ( np.sum(pm) + (1.0 - np.sum(pm)) / 2.0 ) # calc idle time with weight=1, and the busy time with weight=1/2 kappa = pm / np.sum(pm) pi = CTMCSolve(sD) lambd = [] for i in range(K): lambd.append(np.sum(pi * D[i + 1])) Psiw = [] Qwmp = [] Qwzp = [] Qwpp = [] Qwmz = [] Qwpz = [] Qwzz = [] Qwmm = [] Qwpm = [] Qwzm = [] for k in range(K): # step 2. construct a workload process for classes k...K # ====================================================== Mlo = np.sum(M[:k]) Mhi = np.sum(M[k:]) Qkwpp = ml.zeros((N * Mlo * Mhi + N * Mhi, N * Mlo * Mhi + N * Mhi)) Qkwpz = ml.zeros((N * Mlo * Mhi + N * Mhi, N * Mlo)) Qkwpm = ml.zeros((N * Mlo * Mhi + N * Mhi, N)) Qkwmz = ml.zeros((N, N * Mlo)) Qkwmp = ml.zeros((N, N * Mlo * Mhi + N * Mhi)) Dlo = ml.matrix(D0) for i in range(k): Dlo = Dlo + D[i + 1] Qkwmm = Dlo Qkwzp = ml.zeros((N * Mlo, N * Mlo * Mhi + N * Mhi)) Qkwzm = ml.zeros((N * Mlo, N)) Qkwzz = ml.zeros((N * Mlo, N * Mlo)) kix = 0 for i in range(k, K): kix2 = 0 for j in range(k): bs = N * M[j] * M[i] bs2 = N * M[j] Qkwpp[kix:kix + bs, kix:kix + bs] = np.kron(I, np.kron(ml.eye(M[j]), S[i])) Qkwpz[kix:kix + bs, kix2:kix2 + bs2] = np.kron(I, np.kron(ml.eye(M[j]), s[i])) Qkwzp[kix2:kix2 + bs2, kix:kix + bs] = np.kron(D[i + 1], np.kron(ml.eye(M[j]), sigma[i])) kix += bs kix2 += bs2 for i in range(k, K): bs = N * M[i] Qkwpp[kix:kix + bs, :][:, kix:kix + bs] = np.kron(I, S[i]) Qkwpm[kix:kix + bs, :] = np.kron(I, s[i]) Qkwmp[:, kix:kix + bs] = np.kron(D[i + 1], sigma[i]) kix += bs kix = 0 for j in range(k): bs = N * M[j] Qkwzz[kix:kix + bs, kix:kix + bs] = np.kron(Dlo, ml.eye(M[j])) + np.kron(I, S[j]) Qkwzm[kix:kix + bs, :] = np.kron(I, s[j]) kix += bs if Qkwzz.shape[0] > 0: Psikw = FluidFundamentalMatrices( Qkwpp + Qkwpz * (-Qkwzz).I * Qkwzp, Qkwpm + Qkwpz * (-Qkwzz).I * Qkwzm, Qkwmp, Qkwmm, 'P', precision) else: Psikw = FluidFundamentalMatrices(Qkwpp, Qkwpm, Qkwmp, Qkwmm, 'P', precision) Psiw.append(Psikw) Qwzp.append(Qkwzp) Qwmp.append(Qkwmp) Qwpp.append(Qkwpp) Qwmz.append(Qkwmz) Qwpz.append(Qkwpz) Qwzz.append(Qkwzz) Qwmm.append(Qkwmm) Qwpm.append(Qkwpm) Qwzm.append(Qkwzm) # step 3. calculate Phi vectors # ============================= lambdaS = sum(lambd) phi = [(1 - ro) * kappa * (-D0) / lambdaS] q0 = [[]] qL = [[]] for k in range(K - 1): sDk = ml.matrix(D0) for j in range(k + 1): sDk = sDk + D[j + 1] # pk pk = sum(lambd[:k + 1]) / lambdaS - (1 - ro) * kappa * np.sum( sDk, 1) / lambdaS # A^(k,1) Qwzpk = Qwzp[k + 1] vix = 0 Ak = [] for ii in range(k + 1): bs = N * M[ii] V1 = Qwzpk[vix:vix + bs, :] Ak.append( np.kron(I, sigma[ii]) * (-np.kron(sDk, ml.eye(M[ii])) - np.kron(I, S[ii])).I * (np.kron(I, s[ii]) + V1 * Psiw[k + 1])) vix += bs # B^k Qwmpk = Qwmp[k + 1] Bk = Qwmpk * Psiw[k + 1] ztag = phi[0] * ((-D0).I * D[k + 1] * Ak[k] - Ak[0] + (-D0).I * Bk) for i in range(k): ztag += phi[i + 1] * (Ak[i] - Ak[i + 1]) + phi[0] * ( -D0).I * D[i + 1] * Ak[i] Mx = ml.eye(Ak[k].shape[0]) - Ak[k] Mx[:, 0] = ml.ones((N, 1)) phi.append( ml.hstack((pk, ztag[:, 1:])) * Mx.I) # phi(k) = Psi^(k)_k * p(k). Psi^(k)_i = phi(i) / p(k) q0.append(phi[0] * (-D0).I) qLii = [] for ii in range(k + 1): qLii.append((phi[ii + 1] - phi[ii] + phi[0] * (-D0).I * D[ii + 1]) * np.kron(I, sigma[ii]) * (-np.kron(sDk, ml.eye(M[ii])) - np.kron(I, S[ii])).I) qL.append(ml.hstack(qLii)) # step 4. calculate performance measures # ====================================== Ret = [] for k in classes: sD0k = ml.matrix(D0) for i in range(k): sD0k += D[i + 1] if k < K - 1: # step 4.1 calculate distribution of the workload process right # before the arrivals of class k jobs # ============================================================ if Qwzz[k].shape[0] > 0: Kw = Qwpp[k] + Qwpz[k] * ( -Qwzz[k]).I * Qwzp[k] + Psiw[k] * Qwmp[k] else: Kw = Qwpp[k] + Psiw[k] * Qwmp[k] BM = ml.zeros((0, 0)) CM = ml.zeros((0, N)) DM = ml.zeros((0, 0)) for i in range(k): BM = la.block_diag(BM, np.kron(I, S[i])) CM = ml.vstack((CM, np.kron(I, s[i]))) DM = la.block_diag(DM, np.kron(D[k + 1], ml.eye(M[i]))) if k > 0: Kwu = ml.vstack((ml.hstack( (Kw, (Qwpz[k] + Psiw[k] * Qwmz[k]) * (-Qwzz[k]).I * DM)), ml.hstack((ml.zeros( (BM.shape[0], Kw.shape[1])), BM)))) Bwu = ml.vstack((Psiw[k] * D[k + 1], CM)) iniw = ml.hstack( (q0[k] * Qwmp[k] + qL[k] * Qwzp[k], qL[k] * DM)) pwu = q0[k] * D[k + 1] else: Kwu = Kw Bwu = Psiw[k] * D[k + 1] iniw = pm * Qwmp[k] pwu = pm * D[k + 1] norm = np.sum(pwu) + np.sum(iniw * (-Kwu).I * Bwu) pwu = pwu / norm iniw = iniw / norm # step 4.2 create the fluid model whose first passage time equals the # WAITING time of the low prioroity customers # ================================================================== KN = Kwu.shape[0] Qspp = ml.zeros( (KN + N * np.sum(M[k + 1:]), KN + N * np.sum(M[k + 1:]))) Qspm = ml.zeros((KN + N * np.sum(M[k + 1:]), N)) Qsmp = ml.zeros((N, KN + N * np.sum(M[k + 1:]))) Qsmm = sD0k + D[k + 1] kix = 0 for i in range(k + 1, K): bs = N * M[i] Qspp[KN + kix:KN + kix + bs, :][:, KN + kix:KN + kix + bs] = np.kron(I, S[i]) Qspm[KN + kix:KN + kix + bs, :] = np.kron(I, s[i]) Qsmp[:, KN + kix:KN + kix + bs] = np.kron(D[i + 1], sigma[i]) kix += bs Qspp[:KN, :][:, :KN] = Kwu Qspm[:KN, :] = Bwu inis = ml.hstack((iniw, ml.zeros((1, N * np.sum(M[k + 1:]))))) # calculate fundamental matrix Psis = FluidFundamentalMatrices(Qspp, Qspm, Qsmp, Qsmm, 'P', precision) # step 4.3. calculate the performance measures # ========================================== argIx = 0 while argIx < len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx] == "stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx + 1] # calculate waiting time moments Pn = [Psis] wtMoms = [] for n in range(1, numOfSTMoms + 1): A = Qspp + Psis * Qsmp B = Qsmm + Qsmp * Psis C = -2 * n * Pn[n - 1] bino = 1 for i in range(1, n): bino = bino * (n - i + 1) / i C += bino * Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) wtMoms.append(np.sum(inis * P * (-1)**n) / 2**n) # calculate RESPONSE time moments Pnr = [np.sum(inis * Pn[0]) * sigma[k]] rtMoms = [] for n in range(1, numOfSTMoms + 1): P = n * Pnr[n - 1] * (-S[k]).I + (-1)**n * np.sum( inis * Pn[n]) * sigma[k] / 2**n Pnr.append(P) rtMoms.append( np.sum(P) + np.sum(pwu) * math.factorial(n) * np.sum(sigma[k] * (-S[k]).I**n)) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx] == "stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx + 1] res = [] for t in stCdfPoints: L = erlMaxOrder lambdae = L / t / 2 Psie = FluidFundamentalMatrices( Qspp - lambdae * ml.eye(Qspp.shape[0]), Qspm, Qsmp, Qsmm - lambdae * ml.eye(Qsmm.shape[0]), 'P', precision) Pn = [Psie] pr = (np.sum(pwu) + np.sum(inis * Psie)) * (1 - np.sum( sigma[k] * (ml.eye(S[k].shape[0]) - S[k] / 2 / lambdae).I**L)) for n in range(1, L): A = Qspp + Psie * Qsmp - lambdae * ml.eye( Qspp.shape[0]) B = Qsmm + Qsmp * Psie - lambdae * ml.eye( Qsmm.shape[0]) C = 2 * lambdae * Pn[n - 1] for i in range(1, n): C += Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) pr += np.sum(inis * P) * ( 1 - np.sum(sigma[k] * (np.eye(S[k].shape[0]) - S[k] / 2 / lambdae).I**(L - n))) res.append(pr) Ret.append(np.array(res)) argIx += 1 elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or argv[argIx] == "ncDistr"): W = (-np.kron(sD - D[k + 1], ml.eye(M[k])) - np.kron(I, S[k])).I * np.kron(D[k + 1], ml.eye(M[k])) iW = (ml.eye(W.shape[0]) - W).I w = np.kron(ml.eye(N), sigma[k]) omega = (-np.kron(sD - D[k + 1], ml.eye(M[k])) - np.kron(I, S[k])).I * np.kron(I, s[k]) if argv[argIx] == "ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx + 1] # first calculate it at departure instants Psii = [Psis] QLDPn = [inis * Psii[0] * w * iW] for n in range(1, numOfQLMoms + 1): A = Qspp + Psis * Qsmp B = Qsmm + Qsmp * Psis C = n * Psii[n - 1] * D[k + 1] bino = 1 for i in range(1, n): bino = bino * (n - i + 1) / i C = C + bino * Psii[i] * Qsmp * Psii[n - i] P = la.solve_sylvester(A, B, -C) Psii.append(P) QLDPn.append(n * QLDPn[n - 1] * iW * W + inis * P * w * iW) for n in range(numOfQLMoms + 1): QLDPn[n] = (QLDPn[n] + pwu * w * iW**(n + 1) * W**n) * omega # now calculate it at random time instance QLPn = [pi] qlMoms = [] iTerm = (ml.ones((N, 1)) * pi - sD).I for n in range(1, numOfQLMoms + 1): sumP = np.sum(QLDPn[n]) + n * np.sum( (QLDPn[n - 1] - QLPn[n - 1] * D[k + 1] / lambd[k]) * iTerm * D[k + 1]) P = sumP * pi + n * ( QLPn[n - 1] * D[k + 1] - QLDPn[n - 1] * lambd[k]) * iTerm QLPn.append(P) qlMoms.append(np.sum(P)) qlMoms = MomsFromFactorialMoms(qlMoms) Ret.append(qlMoms) argIx += 1 elif argv[argIx] == "ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx + 1] Psid = FluidFundamentalMatrices( Qspp, Qspm, Qsmp, sD0k, 'P', precision) Pn = [Psid] XDn = inis * Psid * w dqlProbs = (XDn + pwu * w) * omega for n in range(1, numOfQLProbs): A = Qspp + Psid * Qsmp B = sD0k + Qsmp * Psid C = Pn[n - 1] * D[k + 1] for i in range(1, n): C += Pn[i] * Qsmp * Pn[n - i] P = la.solve_sylvester(A, B, -C) Pn.append(P) XDn = XDn * W + inis * P * w dqlProbs = ml.vstack( (dqlProbs, (XDn + pwu * w * W**n) * omega)) # now calculate it at random time instance iTerm = -(sD - D[k + 1]).I qlProbs = lambd[k] * dqlProbs[0, :] * iTerm for n in range(1, numOfQLProbs): P = (qlProbs[n - 1, :] * D[k + 1] + lambd[k] * (dqlProbs[n, :] - dqlProbs[n - 1, :])) * iTerm qlProbs = ml.vstack((qlProbs, P)) qlProbs = np.sum(qlProbs, 1).A.flatten() Ret.append(qlProbs) argIx += 1 else: raise Exception("MMAPPH1NPPR: Unknown parameter " + str(argv[argIx])) argIx += 1 elif k == K - 1: # step 3. calculate the performance measures # ========================================== argIx = 0 while argIx < len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and (argv[argIx] == "stMoms" or argv[argIx] == "stDistr"): Kw = Qwpp[k] + Qwpz[k] * ( -Qwzz[k]).I * Qwzp[k] + Psiw[k] * Qwmp[k] AM = ml.zeros((0, 0)) BM = ml.zeros((0, 0)) CM = ml.zeros((0, 1)) DM = ml.zeros((0, 0)) for i in range(k): AM = la.block_diag( AM, np.kron(ml.ones((N, 1)), np.kron(ml.eye(M[i]), s[k]))) BM = la.block_diag(BM, S[i]) CM = ml.vstack((CM, s[i])) DM = la.block_diag(DM, np.kron(D[k + 1], ml.eye(M[i]))) Z = ml.vstack((ml.hstack( (Kw, ml.vstack((AM, ml.zeros( (N * M[k], AM.shape[1])))))), ml.hstack((ml.zeros( (BM.shape[0], Kw.shape[1])), BM)))) z = ml.vstack((ml.zeros( (AM.shape[0], 1)), np.kron(ml.ones((N, 1)), s[k]), CM)) iniw = ml.hstack((q0[k] * Qwmp[k] + qL[k] * Qwzp[k], ml.zeros((1, BM.shape[0])))) zeta = iniw / np.sum(iniw * (-Z).I * z) if argv[argIx] == "stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx + 1] rtMoms = [] for i in range(1, numOfSTMoms + 1): rtMoms.append( np.sum( math.factorial(i) * zeta * (-Z).I**(i + 1) * z)) Ret.append(rtMoms) argIx += 1 if argv[argIx] == "stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx + 1] rtDistr = [] for t in stCdfPoints: rtDistr.append( np.sum(zeta * (-Z).I * (ml.eye(Z.shape[0]) - la.expm(Z * t)) * z)) Ret.append(np.array(rtDistr)) argIx += 1 elif type(argv[argIx]) is str and (argv[argIx] == "ncMoms" or argv[argIx] == "ncDistr"): L = ml.zeros((N * np.sum(M), N * np.sum(M))) B = ml.zeros((N * np.sum(M), N * np.sum(M))) F = ml.zeros((N * np.sum(M), N * np.sum(M))) kix = 0 for i in range(K): bs = N * M[i] F[kix:kix + bs, :][:, kix:kix + bs] = np.kron( D[k + 1], ml.eye(M[i])) L[kix:kix + bs, :][:, kix:kix + bs] = np.kron( sD0k, ml.eye(M[i])) + np.kron(I, S[i]) if i < K - 1: L[kix:kix + bs, :][:, N * np.sum(M[:k]):] = np.kron( I, s[i] * sigma[k]) else: B[kix:kix + bs, :][:, N * np.sum(M[:k]):] = np.kron( I, s[i] * sigma[k]) kix += bs R = QBDFundamentalMatrices(B, L, F, 'R', precision) p0 = ml.hstack((qL[k], q0[k] * np.kron(I, sigma[k]))) p0 = p0 / np.sum(p0 * (ml.eye(R.shape[0]) - R).I) if argv[argIx] == "ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx + 1] qlMoms = [] for i in range(1, numOfQLMoms + 1): qlMoms.append( np.sum( math.factorial(i) * p0 * R**i * (ml.eye(R.shape[0]) - R).I**(i + 1))) Ret.append(MomsFromFactorialMoms(qlMoms)) elif argv[argIx] == "ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx + 1] qlProbs = [np.sum(p0)] for i in range(1, numOfQLProbs): qlProbs.append(np.sum(p0 * R**i)) Ret.append(np.array(qlProbs)) argIx += 1 else: raise Exception("MMAPPH1NPPR: Unknown parameter " + str(argv[argIx])) argIx += 1 if len(Ret) == 1: return Ret[0] else: return Ret
def test9(): ##################################### ## STANDARD COOLEY HANSE CIA MODEL ## ##################################### # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_linear,mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_cf,mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo],5) == round(rbc2.sstate[keyo],5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack((rbc1.modsolvers.pyuhlig.Q,rbc1.modsolvers.pyuhlig.P)) modlin1 = [round(modlin1[0,i1],5) for i1 in range(modlin1.shape[1])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:,:] modnlin1 = [round(modnlin1[0,i1],5) for i1 in range(modnlin1.shape[1])] print 'Comparison: Standard CIA model' print "Linear is: ",modlin1 print '----------------------' print "Nonlinear is: ",modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack((rbc1.modsolvers.pyuhlig.S,rbc1.modsolvers.pyuhlig.R)) modlin2 = [[round(modlin2[i2,i1],5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F modnlin2 = [[round(modnlin2[i2,i1],5) for i1 in range(modnlin2.shape[1])] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2 ##################################################### ## STANDARD COOLEY HANSE CIA MODEL WITH SEIGNORAGE ## ##################################################### # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_linear,mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_cf,mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo],5) == round(rbc2.sstate[keyo],5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack((rbc1.modsolvers.pyuhlig.Q,rbc1.modsolvers.pyuhlig.P)) modlin1 = [round(modlin1[0,i1],5) for i1 in range(modlin1.shape[1])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:,:] modnlin1 = [round(modnlin1[0,i1],5) for i1 in range(modnlin1.shape[1])] print 'Comparison: Standard CIA model with seignorage' print "Linear is: ",modlin1 print '----------------------' print "Nonlinear is: ",modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack((rbc1.modsolvers.pyuhlig.S,rbc1.modsolvers.pyuhlig.R)) modlin2 = [[round(modlin2[i2,i1],5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F modnlin2 = [[round(modnlin2[i2,i1],5) for i1 in range(modnlin2.shape[1])] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2 ##################################################################### ## STANDARD COOLEY HANSE CIA MODEL WITH SEIGNORAGE AND CES UTILITY ## ##################################################################### # Be careful, here in the log-linearized version we have two endogenous states, k and mg # But in the automatically linearized version using the Jacobian we only have one, k # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_ces_linear,mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_ces_cf,mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo],5) == round(rbc2.sstate[keyo],5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack((rbc1.modsolvers.pyuhlig.Q[:nendo,:],rbc1.modsolvers.pyuhlig.P[:nendo,:nendo])) modlin1 = [[round(modlin1[i2,i1],5) for i1 in range(modlin1.shape[1])] for i2 in range(modlin1.shape[0])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:,:] modnlin1 = [[round(modnlin1[i2,i1],5) for i1 in range(modnlin1.shape[1])] for i2 in range(modnlin1.shape[0])] print 'Comparison: Standard CIA model with seignorage and CES utility' print "Linear is: ",modlin1 print '----------------------' print "Nonlinear is: ",modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack((rbc1.modsolvers.pyuhlig.S[:,:],rbc1.modsolvers.pyuhlig.R[:,:nendo])) modlin2 = [[round(modlin2[i2,i1],5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F[:-1,:] modnlin2 = [[round(modnlin2[i2,i1],5) for i1 in range(modnlin2.shape[1])] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2
def CanonicalFromDPH3 (alpha,A,prec=1e-14): """ Returns the canonical form of an order-3 discrete phase-type distribution. Parameters ---------- alpha : matrix, shape (1,3) Initial vector of the discrete phase-type distribution A : matrix, shape (3,3) Transition probability matrix of the discrete phase-type distribution prec : double, optional Numerical precision for checking the input, default value is 1e-14 Returns ------- beta : matrix, shape (1,3) The initial probability vector of the canonical form B : matrix, shape (3,3) Transition probability matrix of the canonical form """ if butools.checkInput and not CheckMGRepresentation (alpha, A, prec): raise Exception("CanonicalFromDPH3: Input is not a valid DPH representation!") if butools.checkInput and (A.shape[0]!=3 or A.shape[1]!=3): raise Exception("CanonicalFromDPH3: Dimension must be 3!") ev = la.eigvals(A) ix = np.argsort(-np.abs(np.real(ev))) lambd = ev[ix] eye = ml.eye(3); a0 = -lambd[0]*lambd[1]*lambd[2] a1 = lambd[0]*lambd[1]+lambd[0]*lambd[2]+lambd[1]*lambd[2] a2 = -lambd[0]-lambd[1]-lambd[2] e = ml.matrix([[1,1,1]]).T if np.real(lambd[0])>0 and np.real(lambd[1])>=0 and np.real(lambd[2])>=0: #PPP case alphaout,A2 = CanonicalFromPH3(alpha,A-eye,prec) Aout = A2+eye elif np.real(lambd[0])>0 and np.real(lambd[1])>=0 and np.real(lambd[2])<0: #PPN case x1 = lambd[0] x2 = lambd[1]+lambd[2] x3=lambd[1]*lambd[2]/(lambd[1]+lambd[2]-1) Aout=ml.matrix([[x1,1-x1,0],[0,x2,1-x2],[0,x3,0]]) b3=1/(1-x3)*(e-A*e) b2=1/(1-x2)*A*b3 b1=e-b2-b3 B=ml.hstack((b1,b2,b3)) alphaout=alpha*B elif np.real(lambd[0])>0 and np.real(lambd[1])<0 and np.real(lambd[2])>=0: #PNP case x1=-a2 x2=(a0-a1*a2)/(a2*(1+a2)) x3=a0*(1+a2)/(a0-a2-a1*a2-a2**2) Aout=ml.matrix([[x1,1-x1,0],[x2,0,1-x2],[0,x3,0]]) b3=1/(1-x3)*(e-A*e) b2=1/(1-x2)*A*b3 b1=e-b2-b3 if alpha*b1>=0: B=ml.hstack((b1,b2,b3)) alphaout = alpha*B else: #Set the initial vector first element to 0 x33=0 a1=-1 while x33 <= 1: [a1,x1,x2,x3,B]=firstInitElem(x33,lambd,alpha,A) if a1 >= 0 and x1 >= 0 and x2 >= 0 and x3 >= 0 and x3+x33 < 1: break x33=x33+0.01 if a1 >= 0: Aout=ml.matrix([[x1,1-x1,0],[x2,0,1-x2],[0,x3,x33]]) alphaout=alpha*B else: #PNP+ x1=lambd[2] x2=lambd[0]+lambd[1] x3=lambd[0]*lambd[1]/(lambd[0]+lambd[1]-1) Aout=ml.matrix([[x1,0,0],[0,x2,1-x2],[0,x3,0]]) p1=alpha*(e-A*e) p2=alpha*A*(e-A*e) d1=(1-lambd[0])*((1-lambd[1])*(1-lambd[2])+(-1+lambd[1]+lambd[2])*p1-p2)/((lambd[0]-lambd[1])*(lambd[0]-lambd[2])) d2=(lambd[1]-1)*((1-lambd[0])*(1-lambd[2])+(-1+lambd[0]+lambd[2])*p1-p2)/((lambd[0]-lambd[1])*(lambd[1]-lambd[2])) d3=(lambd[2]-1)*((1-lambd[0])*(1-lambd[1])+(-1+lambd[0]+lambd[1])*p1-p2)/((lambd[1]-lambd[2])*(lambd[2]-lambd[0])) alphaout=ml.matrix([[d3/(1-lambd[2]),(d1*lambd[0]+d2*lambd[1])/((1-lambd[0])*(1-lambd[1])),(d1+d2)*(1-lambd[0]-lambd[1])/((1-lambd[0])*(1-lambd[1]))]]) if np.min(alphaout) < 0 or np.min(np.min(Aout)) < 0: raise Exception("DPH3Canonical: Unhandled PNP case!") elif np.real(lambd[0])>0 and np.real(lambd[1])<0 and np.real(lambd[2])<0: #PNN case if np.all(np.isreal(lambd)) or np.abs(lambd[1])**2 <= 2*lambd[0]*(-np.real(lambd[1])): x1=-a2 x2=-a1/(1+a2) x3=-a0/(1+a1+a2) Aout=ml.matrix([[x1,1-x1,0],[x2,0,1-x2],[x3,0,0]]) b3=1/(1-x3)*(e-A*e) b2=1/(1-x2)*A*b3 b1=e-b2-b3 B=ml.hstack((b1,b2,b3)) alphaout=alpha*B else: [alphaout,A2]=CanonicalFromPH3(alpha,A-eye,prec) Aout=A2+eye return (np.real(alphaout),np.real(Aout))
def MMAPPH1NPPR(D, sigma, S, *argv): """ Returns various performane measures of a continuous time MMAP[K]/PH[K]/1 non-preemptive priority queue, see [1]_. Parameters ---------- D : list of matrices of shape (N,N), length (K+1) The D0...DK matrices of the arrival process. D1 corresponds to the lowest, DK to the highest priority. sigma : list of row vectors, length (K) The list containing the initial probability vectors of the service time distributions of the various customer types. The length of the vectors does not have to be the same. S : list of square matrices, length (K) The transient generators of the phase type distributions representing the service time of the jobs belonging to various types. further parameters : The rest of the function parameters specify the options and the performance measures to be computed. The supported performance measures and options in this function are: +----------------+--------------------+----------------------------------------+ | Parameter name | Input parameters | Output | +================+====================+========================================+ | "ncMoms" | Number of moments | The moments of the number of customers | +----------------+--------------------+----------------------------------------+ | "ncDistr" | Upper limit K | The distribution of the number of | | | | customers from level 0 to level K-1 | +----------------+--------------------+----------------------------------------+ | "stMoms" | Number of moments | The sojourn time moments | +----------------+--------------------+----------------------------------------+ | "stDistr" | A vector of points | The sojourn time distribution at the | | | | requested points (cummulative, cdf) | +----------------+--------------------+----------------------------------------+ | "prec" | The precision | Numerical precision used as a stopping | | | | condition when solving the Riccati and | | | | the matrix-quadratic equations | +----------------+--------------------+----------------------------------------+ | "erlMaxOrder" | Integer number | The maximal Erlang order used in the | | | | erlangization procedure. The default | | | | value is 200. | +----------------+--------------------+----------------------------------------+ | "classes" | Vector of integers | Only the performance measures | | | | belonging to these classes are | | | | returned. If not given, all classes | | | | are analyzed. | +----------------+--------------------+----------------------------------------+ (The quantities related to the number of customers in the system include the customer in the server, and the sojourn time related quantities include the service times as well) Returns ------- Ret : list of the performance measures Each entry of the list corresponds to a performance measure requested. Each entry is a matrix, where the columns belong to the various job types. If there is just a single item, then it is not put into a list. References ---------- .. [1] G. Horvath, "Efficient analysis of the MMAP[K]/PH[K]/1 priority queue", European Journal of Operational Research, 246(1), 128-139, 2015. """ K = len(D)-1 # parse options eaten = [] erlMaxOrder = 200; precision = 1e-14; classes = np.arange(0,K) for i in range(len(argv)): if argv[i]=="prec": precision = argv[i+1] eaten.append(i) eaten.append(i+1) elif argv[i]=="erlMaxOrder": erlMaxOrder = argv[i+1] eaten.append(i) eaten.append(i+1) elif argv[i]=="classes": classes = np.array(argv[i+1])-1 eaten.append(i) eaten.append(i+1) if butools.checkInput and not CheckMMAPRepresentation(D): raise Exception('MMAPPH1PRPR: The arrival process is not a valid MMAP representation!') if butools.checkInput: for k in range(K): if not CheckPHRepresentation(sigma[k],S[k]): raise Exception('MMAPPH1PRPR: the vector and matrix describing the service times is not a valid PH representation!') # some preparation D0 = D[0] N = D0.shape[0] I = ml.eye(N) sD = ml.zeros((N,N)) for Di in D: sD += Di s = [] M = np.empty(K) for i in range(K): s.append(np.sum(-S[i],1)) M[i] = sigma[i].size # step 1. solution of the workload process of the joint queue # =========================================================== sM = np.sum(M) Qwmm = ml.matrix(D0) Qwpm = ml.zeros((N*sM, N)) Qwmp = ml.zeros((N, N*sM)) Qwpp = ml.zeros((N*sM, N*sM)) kix = 0 for i in range(K): Qwmp[:,kix:kix+N*M[i]] = np.kron(D[i+1], sigma[i]) Qwpm[kix:kix+N*M[i],:] = np.kron(I,s[i]) Qwpp[kix:kix+N*M[i],:][:,kix:kix+N*M[i]] = np.kron(I,S[i]) kix += N*M[i] # calculate fundamental matrices Psiw, Kw, Uw = FluidFundamentalMatrices (Qwpp, Qwpm, Qwmp, Qwmm, 'PKU', precision) # calculate boundary vector Ua = ml.ones((N,1)) + 2*np.sum(Qwmp*(-Kw).I,1) pm = Linsolve (ml.hstack((Uw,Ua)).T, ml.hstack((ml.zeros((1,N)),ml.ones((1,1)))).T).T ro = ((1.0-np.sum(pm))/2.0)/(np.sum(pm)+(1.0-np.sum(pm))/2.0) # calc idle time with weight=1, and the busy time with weight=1/2 kappa = pm/np.sum(pm) pi = CTMCSolve (sD) lambd = [] for i in range(K): lambd.append(np.sum(pi*D[i+1])) Psiw = [] Qwmp = [] Qwzp = [] Qwpp = [] Qwmz = [] Qwpz = [] Qwzz = [] Qwmm = [] Qwpm = [] Qwzm = [] for k in range(K): # step 2. construct a workload process for classes k...K # ====================================================== Mlo = np.sum(M[:k]) Mhi = np.sum(M[k:]) Qkwpp = ml.zeros((N*Mlo*Mhi+N*Mhi, N*Mlo*Mhi+N*Mhi)) Qkwpz = ml.zeros((N*Mlo*Mhi+N*Mhi, N*Mlo)) Qkwpm = ml.zeros((N*Mlo*Mhi+N*Mhi, N)) Qkwmz = ml.zeros((N, N*Mlo)) Qkwmp = ml.zeros((N, N*Mlo*Mhi+N*Mhi)) Dlo = ml.matrix(D0) for i in range(k): Dlo = Dlo + D[i+1] Qkwmm = Dlo Qkwzp = ml.zeros((N*Mlo, N*Mlo*Mhi+N*Mhi)) Qkwzm = ml.zeros((N*Mlo, N)) Qkwzz = ml.zeros((N*Mlo, N*Mlo)) kix = 0 for i in range(k,K): kix2 = 0 for j in range(k): bs = N*M[j]*M[i] bs2 = N*M[j] Qkwpp[kix:kix+bs,kix:kix+bs] = np.kron(I,np.kron(ml.eye(M[j]),S[i])) Qkwpz[kix:kix+bs,kix2:kix2+bs2] = np.kron(I,np.kron(ml.eye(M[j]),s[i])) Qkwzp[kix2:kix2+bs2,kix:kix+bs] = np.kron(D[i+1],np.kron(ml.eye(M[j]), sigma[i])) kix += bs kix2 += bs2 for i in range(k,K): bs = N*M[i] Qkwpp[kix:kix+bs,:][:,kix:kix+bs] = np.kron(I,S[i]) Qkwpm[kix:kix+bs,:] = np.kron(I,s[i]) Qkwmp[:,kix:kix+bs] = np.kron(D[i+1],sigma[i]) kix += bs kix = 0 for j in range(k): bs = N*M[j] Qkwzz[kix:kix+bs,kix:kix+bs] = np.kron(Dlo, ml.eye(M[j])) + np.kron(I, S[j]) Qkwzm[kix:kix+bs,:] = np.kron(I, s[j]) kix += bs if Qkwzz.shape[0]>0: Psikw = FluidFundamentalMatrices (Qkwpp+Qkwpz*(-Qkwzz).I*Qkwzp, Qkwpm+Qkwpz*(-Qkwzz).I*Qkwzm, Qkwmp, Qkwmm, 'P', precision) else: Psikw = FluidFundamentalMatrices (Qkwpp, Qkwpm, Qkwmp, Qkwmm, 'P', precision) Psiw.append(Psikw) Qwzp.append(Qkwzp) Qwmp.append(Qkwmp) Qwpp.append(Qkwpp) Qwmz.append(Qkwmz) Qwpz.append(Qkwpz) Qwzz.append(Qkwzz) Qwmm.append(Qkwmm) Qwpm.append(Qkwpm) Qwzm.append(Qkwzm) # step 3. calculate Phi vectors # ============================= lambdaS = sum(lambd) phi = [(1-ro)*kappa*(-D0) / lambdaS] q0 = [[]] qL = [[]] for k in range(K-1): sDk = ml.matrix(D0) for j in range(k+1): sDk = sDk + D[j+1] # pk pk = sum(lambd[:k+1])/lambdaS - (1-ro)*kappa*np.sum(sDk,1)/lambdaS # A^(k,1) Qwzpk = Qwzp[k+1] vix = 0 Ak = [] for ii in range(k+1): bs = N*M[ii] V1 = Qwzpk[vix:vix+bs,:] Ak.append (np.kron(I,sigma[ii]) * (-np.kron(sDk,ml.eye(M[ii]))-np.kron(I,S[ii])).I * (np.kron(I,s[ii]) + V1*Psiw[k+1])) vix += bs # B^k Qwmpk = Qwmp[k+1] Bk = Qwmpk * Psiw[k+1] ztag = phi[0]*((-D0).I*D[k+1]*Ak[k] - Ak[0] + (-D0).I*Bk) for i in range(k): ztag += phi[i+1]*(Ak[i]-Ak[i+1]) + phi[0]*(-D0).I*D[i+1]*Ak[i] Mx = ml.eye(Ak[k].shape[0])-Ak[k] Mx[:,0] = ml.ones((N,1)) phi.append(ml.hstack((pk, ztag[:,1:]))*Mx.I) # phi(k) = Psi^(k)_k * p(k). Psi^(k)_i = phi(i) / p(k) q0.append(phi[0]*(-D0).I) qLii = [] for ii in range(k+1): qLii.append((phi[ii+1] - phi[ii] + phi[0]*(-D0).I*D[ii+1]) * np.kron(I,sigma[ii]) * (-np.kron(sDk,ml.eye(M[ii]))-np.kron(I,S[ii])).I) qL.append(ml.hstack(qLii)) # step 4. calculate performance measures # ====================================== Ret = [] for k in classes: sD0k = ml.matrix(D0) for i in range(k): sD0k += D[i+1] if k<K-1: # step 4.1 calculate distribution of the workload process right # before the arrivals of class k jobs # ============================================================ if Qwzz[k].shape[0]>0: Kw = Qwpp[k]+Qwpz[k]*(-Qwzz[k]).I*Qwzp[k] + Psiw[k]*Qwmp[k] else: Kw = Qwpp[k] + Psiw[k]*Qwmp[k] BM = ml.zeros((0,0)) CM = ml.zeros((0,N)) DM = ml.zeros((0,0)) for i in range(k): BM = la.block_diag(BM,np.kron(I,S[i])) CM = ml.vstack((CM, np.kron(I,s[i]))) DM = la.block_diag(DM,np.kron(D[k+1],ml.eye(M[i]))) if k>0: Kwu = ml.vstack((ml.hstack((Kw, (Qwpz[k]+Psiw[k]*Qwmz[k])*(-Qwzz[k]).I*DM)), ml.hstack((ml.zeros((BM.shape[0],Kw.shape[1])), BM)))) Bwu = ml.vstack((Psiw[k]*D[k+1], CM)) iniw = ml.hstack((q0[k]*Qwmp[k]+qL[k]*Qwzp[k], qL[k]*DM)) pwu = q0[k]*D[k+1] else: Kwu = Kw Bwu = Psiw[k]*D[k+1] iniw = pm*Qwmp[k] pwu = pm*D[k+1] norm = np.sum(pwu) + np.sum(iniw*(-Kwu).I*Bwu) pwu = pwu / norm iniw = iniw / norm # step 4.2 create the fluid model whose first passage time equals the # WAITING time of the low prioroity customers # ================================================================== KN = Kwu.shape[0] Qspp = ml.zeros((KN+N*np.sum(M[k+1:]), KN+N*np.sum(M[k+1:]))) Qspm = ml.zeros((KN+N*np.sum(M[k+1:]), N)) Qsmp = ml.zeros((N, KN+N*np.sum(M[k+1:]))) Qsmm = sD0k + D[k+1] kix = 0 for i in range(k+1,K): bs = N*M[i] Qspp[KN+kix:KN+kix+bs,:][:,KN+kix:KN+kix+bs] = np.kron(I,S[i]) Qspm[KN+kix:KN+kix+bs,:] = np.kron(I,s[i]) Qsmp[:,KN+kix:KN+kix+bs] = np.kron(D[i+1],sigma[i]) kix += bs Qspp[:KN,:][:,:KN] = Kwu Qspm[:KN,:] = Bwu inis = ml.hstack((iniw, ml.zeros((1,N*np.sum(M[k+1:]))))) # calculate fundamental matrix Psis = FluidFundamentalMatrices (Qspp, Qspm, Qsmp, Qsmm, 'P', precision) # step 4.3. calculate the performance measures # ========================================== argIx = 0 while argIx<len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx]=="stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx+1] # calculate waiting time moments Pn = [Psis] wtMoms = [] for n in range(1,numOfSTMoms+1): A = Qspp + Psis*Qsmp B = Qsmm + Qsmp*Psis C = -2*n*Pn[n-1] bino = 1 for i in range(1,n): bino = bino * (n-i+1) / i C += bino * Pn[i]*Qsmp*Pn[n-i] P = la.solve_sylvester(A, B, -C) Pn.append(P) wtMoms.append(np.sum(inis*P*(-1)**n) / 2**n) # calculate RESPONSE time moments Pnr = [np.sum(inis*Pn[0])*sigma[k]] rtMoms = [] for n in range(1,numOfSTMoms+1): P = n*Pnr[n-1]*(-S[k]).I + (-1)**n*np.sum(inis*Pn[n])*sigma[k] / 2**n Pnr.append(P) rtMoms.append(np.sum(P)+np.sum(pwu)*math.factorial(n)*np.sum(sigma[k]*(-S[k]).I**n)) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx]=="stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx+1] res = [] for t in stCdfPoints: L = erlMaxOrder lambdae = L/t/2 Psie = FluidFundamentalMatrices (Qspp-lambdae*ml.eye(Qspp.shape[0]), Qspm, Qsmp, Qsmm-lambdae*ml.eye(Qsmm.shape[0]), 'P', precision) Pn = [Psie] pr = (np.sum(pwu) + np.sum(inis*Psie)) * (1-np.sum(sigma[k]*(ml.eye(S[k].shape[0])-S[k]/2/lambdae).I**L)) for n in range(1,L): A = Qspp + Psie*Qsmp - lambdae*ml.eye(Qspp.shape[0]) B = Qsmm + Qsmp*Psie - lambdae*ml.eye(Qsmm.shape[0]) C = 2*lambdae*Pn[n-1] for i in range(1,n): C += Pn[i]*Qsmp*Pn[n-i] P = la.solve_sylvester(A, B, -C) Pn.append(P) pr += np.sum(inis*P) * (1-np.sum(sigma[k]*(np.eye(S[k].shape[0])-S[k]/2/lambdae).I**(L-n))) res.append(pr) Ret.append(np.array(res)) argIx += 1 elif type(argv[argIx]) is str and (argv[argIx]=="ncMoms" or argv[argIx]=="ncDistr"): W = (-np.kron(sD-D[k+1],ml.eye(M[k]))-np.kron(I,S[k])).I*np.kron(D[k+1],ml.eye(M[k])) iW = (ml.eye(W.shape[0])-W).I w = np.kron(ml.eye(N),sigma[k]) omega = (-np.kron(sD-D[k+1],ml.eye(M[k]))-np.kron(I,S[k])).I*np.kron(I,s[k]) if argv[argIx]=="ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx+1] # first calculate it at departure instants Psii = [Psis] QLDPn = [inis*Psii[0]*w*iW] for n in range(1,numOfQLMoms+1): A = Qspp + Psis*Qsmp B = Qsmm + Qsmp*Psis C = n*Psii[n-1]*D[k+1] bino = 1 for i in range(1,n): bino = bino * (n-i+1) / i C = C + bino * Psii[i]*Qsmp*Psii[n-i] P = la.solve_sylvester(A, B, -C) Psii.append(P) QLDPn.append(n*QLDPn[n-1]*iW*W + inis*P*w*iW) for n in range(numOfQLMoms+1): QLDPn[n] = (QLDPn[n] + pwu*w*iW**(n+1)*W**n)*omega # now calculate it at random time instance QLPn = [pi] qlMoms = [] iTerm = (ml.ones((N,1))*pi - sD).I for n in range(1,numOfQLMoms+1): sumP = np.sum(QLDPn[n]) + n*np.sum((QLDPn[n-1] - QLPn[n-1]*D[k+1]/lambd[k])*iTerm*D[k+1]) P = sumP*pi + n*(QLPn[n-1]*D[k+1] - QLDPn[n-1]*lambd[k])*iTerm QLPn.append(P) qlMoms.append(np.sum(P)) qlMoms = MomsFromFactorialMoms(qlMoms) Ret.append(qlMoms) argIx += 1 elif argv[argIx]=="ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx+1] Psid = FluidFundamentalMatrices (Qspp, Qspm, Qsmp, sD0k, 'P', precision) Pn = [Psid] XDn = inis*Psid*w dqlProbs = (XDn+pwu*w)*omega for n in range(1,numOfQLProbs): A = Qspp + Psid*Qsmp B = sD0k + Qsmp*Psid C = Pn[n-1]*D[k+1] for i in range(1,n): C += Pn[i]*Qsmp*Pn[n-i] P = la.solve_sylvester(A, B, -C) Pn.append(P) XDn = XDn*W + inis*P*w dqlProbs = ml.vstack((dqlProbs, (XDn+pwu*w*W**n)*omega)) # now calculate it at random time instance iTerm = -(sD-D[k+1]).I qlProbs = lambd[k]*dqlProbs[0,:]*iTerm for n in range(1,numOfQLProbs): P = (qlProbs[n-1,:]*D[k+1]+lambd[k]*(dqlProbs[n,:]-dqlProbs[n-1,:]))*iTerm qlProbs = ml.vstack((qlProbs, P)) qlProbs = np.sum(qlProbs,1).A.flatten() Ret.append(qlProbs) argIx += 1 else: raise Exception("MMAPPH1NPPR: Unknown parameter "+str(argv[argIx])) argIx += 1 elif k==K-1: # step 3. calculate the performance measures # ========================================== argIx = 0 while argIx<len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and (argv[argIx]=="stMoms" or argv[argIx]=="stDistr"): Kw = Qwpp[k]+Qwpz[k]*(-Qwzz[k]).I*Qwzp[k] + Psiw[k]*Qwmp[k] AM = ml.zeros((0,0)) BM = ml.zeros((0,0)) CM = ml.zeros((0,1)) DM = ml.zeros((0,0)) for i in range(k): AM = la.block_diag(AM,np.kron(ml.ones((N,1)),np.kron(ml.eye(M[i]),s[k]))) BM = la.block_diag(BM,S[i]) CM = ml.vstack((CM, s[i])) DM = la.block_diag(DM,np.kron(D[k+1],ml.eye(M[i]))) Z = ml.vstack((ml.hstack((Kw, ml.vstack((AM,ml.zeros((N*M[k],AM.shape[1])))))), ml.hstack((ml.zeros((BM.shape[0],Kw.shape[1])), BM)))) z = ml.vstack((ml.zeros((AM.shape[0],1)), np.kron(ml.ones((N,1)),s[k]), CM)) iniw = ml.hstack((q0[k]*Qwmp[k]+qL[k]*Qwzp[k], ml.zeros((1,BM.shape[0])))) zeta = iniw/np.sum(iniw*(-Z).I*z) if argv[argIx]=="stMoms": # MOMENTS OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfSTMoms = argv[argIx+1] rtMoms = [] for i in range(1,numOfSTMoms+1): rtMoms.append(np.sum(math.factorial(i)*zeta*(-Z).I**(i+1)*z)) Ret.append(rtMoms) argIx += 1 if argv[argIx]=="stDistr": # DISTRIBUTION OF THE SOJOURN TIME # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stCdfPoints = argv[argIx+1] rtDistr = [] for t in stCdfPoints: rtDistr.append (np.sum(zeta*(-Z).I*(ml.eye(Z.shape[0])-la.expm(Z*t))*z)) Ret.append(np.array(rtDistr)) argIx += 1 elif type(argv[argIx]) is str and (argv[argIx]=="ncMoms" or argv[argIx]=="ncDistr"): L = ml.zeros((N*np.sum(M),N*np.sum(M))) B = ml.zeros((N*np.sum(M),N*np.sum(M))) F = ml.zeros((N*np.sum(M),N*np.sum(M))) kix = 0 for i in range(K): bs = N*M[i] F[kix:kix+bs,:][:,kix:kix+bs] = np.kron(D[k+1],ml.eye(M[i])) L[kix:kix+bs,:][:,kix:kix+bs] = np.kron(sD0k,ml.eye(M[i])) + np.kron(I,S[i]) if i<K-1: L[kix:kix+bs,:][:,N*np.sum(M[:k]):] = np.kron(I,s[i]*sigma[k]) else: B[kix:kix+bs,:][:,N*np.sum(M[:k]):] = np.kron(I,s[i]*sigma[k]) kix += bs R = QBDFundamentalMatrices (B, L, F, 'R', precision) p0 = ml.hstack((qL[k], q0[k]*np.kron(I,sigma[k]))) p0 = p0/np.sum(p0*(ml.eye(R.shape[0])-R).I) if argv[argIx]=="ncMoms": # MOMENTS OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLMoms = argv[argIx+1] qlMoms = [] for i in range(1,numOfQLMoms+1): qlMoms.append(np.sum(math.factorial(i)*p0*R**i*(ml.eye(R.shape[0])-R).I**(i+1))) Ret.append(MomsFromFactorialMoms(qlMoms)) elif argv[argIx]=="ncDistr": # DISTRIBUTION OF THE NUMBER OF JOBS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ numOfQLProbs = argv[argIx+1] qlProbs = [np.sum(p0)] for i in range(1,numOfQLProbs): qlProbs.append(np.sum(p0*R**i)) Ret.append(np.array(qlProbs)) argIx += 1 else: raise Exception("MMAPPH1NPPR: Unknown parameter "+str(argv[argIx])) argIx += 1 if len(Ret)==1: return Ret[0] else: return Ret
def test9(): ##################################### ## STANDARD COOLEY HANSE CIA MODEL ## ##################################### # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_linear, mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_cf, mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo], 5) == round(rbc2.sstate[keyo], 5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack( (rbc1.modsolvers.pyuhlig.Q, rbc1.modsolvers.pyuhlig.P)) modlin1 = [round(modlin1[0, i1], 5) for i1 in range(modlin1.shape[1])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:, :] modnlin1 = [round(modnlin1[0, i1], 5) for i1 in range(modnlin1.shape[1])] print 'Comparison: Standard CIA model' print "Linear is: ", modlin1 print '----------------------' print "Nonlinear is: ", modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack( (rbc1.modsolvers.pyuhlig.S, rbc1.modsolvers.pyuhlig.R)) modlin2 = [[round(modlin2[i2, i1], 5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F modnlin2 = [[ round(modnlin2[i2, i1], 5) for i1 in range(modnlin2.shape[1]) ] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2 ##################################################### ## STANDARD COOLEY HANSE CIA MODEL WITH SEIGNORAGE ## ##################################################### # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_linear, mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_cf, mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo], 5) == round(rbc2.sstate[keyo], 5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack( (rbc1.modsolvers.pyuhlig.Q, rbc1.modsolvers.pyuhlig.P)) modlin1 = [round(modlin1[0, i1], 5) for i1 in range(modlin1.shape[1])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:, :] modnlin1 = [round(modnlin1[0, i1], 5) for i1 in range(modnlin1.shape[1])] print 'Comparison: Standard CIA model with seignorage' print "Linear is: ", modlin1 print '----------------------' print "Nonlinear is: ", modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack( (rbc1.modsolvers.pyuhlig.S, rbc1.modsolvers.pyuhlig.R)) modlin2 = [[round(modlin2[i2, i1], 5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F modnlin2 = [[ round(modnlin2[i2, i1], 5) for i1 in range(modnlin2.shape[1]) ] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2 ##################################################################### ## STANDARD COOLEY HANSE CIA MODEL WITH SEIGNORAGE AND CES UTILITY ## ##################################################################### # Be careful, here in the log-linearized version we have two endogenous states, k and mg # But in the automatically linearized version using the Jacobian we only have one, k # Load and solve the manually linearized model rbc1 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_ces_linear, mesg=True) rbc1.modsolvers.pyuhlig.solve() rbc1.modsolvers.forklein.solve() # Load and solve the automatically linearized model rbc2 = pm.newMOD(models.abcs_rbcs.cooley_hansen_cia_seignorage_ces_cf, mesg=True) rbc2.modsolvers.forkleind.solve() # Check equivalence of steady states for keyo in rbc1.sstate.keys(): if keyo in rbc2.sstate.keys(): assert round(rbc1.sstate[keyo], 5) == round(rbc2.sstate[keyo], 5) # Check equivalence of results nexo = len(rbc2.vardic['exo']['var']) nendo = len(rbc2.vardic['endo']['var']) modlin1 = MAT.hstack((rbc1.modsolvers.pyuhlig.Q[:nendo, :], rbc1.modsolvers.pyuhlig.P[:nendo, :nendo])) modlin1 = [[round(modlin1[i2, i1], 5) for i1 in range(modlin1.shape[1])] for i2 in range(modlin1.shape[0])] modnlin1 = rbc2.modsolvers.forkleind.P[-nendo:, :] modnlin1 = [[ round(modnlin1[i2, i1], 5) for i1 in range(modnlin1.shape[1]) ] for i2 in range(modnlin1.shape[0])] print 'Comparison: Standard CIA model with seignorage and CES utility' print "Linear is: ", modlin1 print '----------------------' print "Nonlinear is: ", modnlin1 assert modlin1 == modnlin1 modlin2 = MAT.hstack((rbc1.modsolvers.pyuhlig.S[:, :], rbc1.modsolvers.pyuhlig.R[:, :nendo])) modlin2 = [[round(modlin2[i2, i1], 5) for i1 in range(modlin2.shape[1])] for i2 in range(modlin2.shape[0])] modnlin2 = rbc2.modsolvers.forkleind.F[:-1, :] modnlin2 = [[ round(modnlin2[i2, i1], 5) for i1 in range(modnlin2.shape[1]) ] for i2 in range(modnlin2.shape[0])] print modlin2 print '----------------------' print modnlin2 assert modlin2 == modnlin2
def MMAPPH1FCFS(D, sigma, S, *argv): """ Returns various performane measures of a MMAP[K]/PH[K]/1 first-come-first-serve queue, see [1]_. Parameters ---------- D : list of matrices of shape (N,N), length (K+1) The D0...DK matrices of the arrival process. sigma : list of row vectors, length (K) The list containing the initial probability vectors of the service time distributions of the various customer types. The length of the vectors does not have to be the same. S : list of square matrices, length (K) The transient generators of the phase type distributions representing the service time of the jobs belonging to various types. further parameters : The rest of the function parameters specify the options and the performance measures to be computed. The supported performance measures and options in this function are: +----------------+--------------------+----------------------------------------+ | Parameter name | Input parameters | Output | +================+====================+========================================+ | "ncMoms" | Number of moments | The moments of the number of customers | +----------------+--------------------+----------------------------------------+ | "ncDistr" | Upper limit K | The distribution of the number of | | | | customers from level 0 to level K-1 | +----------------+--------------------+----------------------------------------+ | "stMoms" | Number of moments | The sojourn time moments | +----------------+--------------------+----------------------------------------+ | "stDistr" | A vector of points | The sojourn time distribution at the | | | | requested points (cummulative, cdf) | +----------------+--------------------+----------------------------------------+ | "stDistrME" | None | The vector-matrix parameters of the | | | | matrix-exponentially distributed | | | | sojourn time distribution | +----------------+--------------------+----------------------------------------+ | "stDistrPH" | None | The vector-matrix parameters of the | | | | matrix-exponentially distributed | | | | sojourn time distribution, converted | | | | to a continuous PH representation | +----------------+--------------------+----------------------------------------+ | "prec" | The precision | Numerical precision used as a stopping | | | | condition when solving the Riccati | | | | equation | +----------------+--------------------+----------------------------------------+ | "classes" | Vector of integers | Only the performance measures | | | | belonging to these classes are | | | | returned. If not given, all classes | | | | are analyzed. | +----------------+--------------------+----------------------------------------+ (The quantities related to the number of customers in the system include the customer in the server, and the sojourn time related quantities include the service times as well) Returns ------- Ret : list of the performance measures Each entry of the list corresponds to a performance measure requested. Each entry is a matrix, where the columns belong to the various job types. If there is just a single item, then it is not put into a list. References ---------- .. [1] Qiming He, "Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: Age process, sojourn times, and queue lengths", Journal of Systems Science and Complexity, 25(1), pp 133-155, 2012. """ K = len(D)-1 # parse options eaten = [] precision = 1e-14; classes = np.arange(0,K) for i in range(len(argv)): if argv[i]=="prec": precision = argv[i+1] eaten.append(i) eaten.append(i+1) elif argv[i]=="classes": classes = np.array(argv[i+1])-1 eaten.append(i) eaten.append(i+1) if butools.checkInput and not CheckMMAPRepresentation(D): raise Exception('MMAPPH1FCFS: The arrival process is not a valid MMAP representation!') if butools.checkInput: for k in range(K): if not CheckPHRepresentation(sigma[k],S[k]): raise Exception('MMAPPH1FCFS: the vector and matrix describing the service times is not a valid PH representation!') # some preparation D0 = D[0] N = D0.shape[0] Ia = ml.eye(N); Da = ml.zeros((N,N)) for q in range(K): Da += D[q+1] theta = CTMCSolve(D0+Da) beta = [CTMCSolve(S[k]+ml.sum(-S[k],1)*sigma[k]) for k in range(K)] lambd = [np.sum(theta*D[k+1]) for k in range(K)] mu = [np.sum(beta[k]*(-S[k])) for k in range(K)] Nsk = [S[k].shape[0] for k in range(K)] ro = np.sum(np.array(lambd)/np.array(mu)) alpha = theta*Da/sum(lambd) D0i = (-D0).I Sa = S[0]; sa = [ml.zeros(sigma[0].shape)]*K sa[0] = sigma[0] ba = [ml.zeros(beta[0].shape)]*K ba[0] = beta[0] sv = [ml.zeros((Nsk[0],1))]*K sv[0] = ml.sum(-S[0],1) Pk = [D0i*D[q+1] for q in range(K)] for k in range(1,K): Sa = la.block_diag(Sa, S[k]) for q in range(K): if q==k: sa[q] = ml.hstack((sa[q], sigma[k])) ba[q] = ml.hstack((ba[q], beta[k])) sv[q] = ml.vstack((sv[q], -np.sum(S[k],1))) else: sa[q] = ml.hstack((sa[q], ml.zeros(sigma[k].shape))) ba[q] = ml.hstack((ba[q], ml.zeros(beta[k].shape))) sv[q] = ml.vstack((sv[q], ml.zeros((Nsk[k],1)))) Sa = ml.matrix(Sa) P = D0i*Da iVec = ml.kron(D[1],sa[0]) for k in range(1,K): iVec += ml.kron(D[k+1],sa[k]) Ns = Sa.shape[0] Is = ml.eye(Ns) # step 1. solve the age process of the queue # ========================================== # solve Y0 and calculate T Y0 = FluidFundamentalMatrices (ml.kron(Ia,Sa), ml.kron(Ia,-ml.sum(Sa,1)), iVec, D0, "P", precision) T = ml.kron(Ia,Sa) + Y0 * iVec # calculate pi0 and v0 pi0 = ml.zeros((1,T.shape[0])) for k in range(K): pi0 += ml.kron(theta*D[k+1],ba[k]/mu[k]) pi0 = - pi0 * T iT = (-T).I oa = ml.ones((N,1)) # step 2. calculate performance measures # ====================================== Ret = [] for k in classes: argIx = 0 clo = iT*ml.kron(oa,sv[k]) while argIx<len(argv): if argIx in eaten: argIx += 1 continue elif type(argv[argIx]) is str and argv[argIx]=="stMoms": numOfSTMoms = argv[argIx+1] rtMoms = [] for m in range(1,numOfSTMoms+1): rtMoms.append(math.factorial(m) * np.sum(pi0 * iT**m * clo / (pi0*clo))) Ret.append(rtMoms) argIx += 1 elif type(argv[argIx]) is str and argv[argIx]=="stDistr": stCdfPoints = argv[argIx+1] cdf = []; for t in stCdfPoints: pr = 1 - np.sum(pi0 * la.expm(T*t) * clo / (pi0*clo)) cdf.append(pr) Ret.append(np.array(cdf)) argIx += 1 elif type(argv[argIx]) is str and argv[argIx]=="stDistrME": Bm = SimilarityMatrixForVectors(clo/(pi0*clo),ml.ones((N*Ns,1))) Bmi = Bm.I A = Bm * T * Bmi alpha = pi0 * Bmi Ret.append(alpha) Ret.append(A) elif type(argv[argIx]) is str and argv[argIx]=="stDistrPH": vv = pi0*iT ix = np.arange(N*Ns) nz = ix[vv.flat>precision] delta = Diag(vv[:,nz]) cl = -T*clo/(pi0*clo) alpha = cl[nz,:].T*delta A = delta.I*T[nz,:][:,nz].T*delta Ret.append(alpha) Ret.append(A) elif type(argv[argIx]) is str and argv[argIx]=="ncDistr": numOfQLProbs = argv[argIx+1] argIx += 1 values = np.empty(numOfQLProbs) jm = ml.zeros((Ns,1)) jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 1 jmc = ml.ones((Ns,1)) jmc[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 0 LmCurr = la.solve_sylvester(T, ml.kron(D0+Da-D[k+1],Is), -ml.eye(N*Ns)) values[0] = 1-ro+np.sum(pi0*LmCurr*ml.kron(oa,jmc)) for i in range(1,numOfQLProbs): LmPrev = LmCurr LmCurr = la.solve_sylvester(T, ml.kron(D0+Da-D[k+1],Is), -LmPrev*ml.kron(D[k+1],Is)) values[i] = np.sum(pi0*LmCurr*ml.kron(oa,jmc) + pi0*LmPrev*ml.kron(oa,jm)); Ret.append(values) elif type(argv[argIx]) is str and argv[argIx]=="ncMoms": numOfQLMoms = argv[argIx+1] argIx += 1 jm = ml.zeros((Ns,1)) jm[np.sum(Nsk[0:k]):np.sum(Nsk[0:k+1]),:] = 1 ELn = [la.solve_sylvester(T, ml.kron(D0+Da,Is), -ml.eye(N*Ns))] qlMoms = [] for n in range(1,numOfQLMoms+1): bino = 1 Btag = ml.zeros((N*Ns,N*Ns)) for i in range(n): Btag += bino * ELn[i] bino *= (n-i) / (i+1) ELn.append(la.solve_sylvester(T, ml.kron(D0+Da,Is), -Btag*ml.kron(D[k+1],Is))) qlMoms.append(np.sum(pi0*ELn[n]) + np.sum(pi0*Btag*ml.kron(oa,jm))) Ret.append(qlMoms) else: raise Exception("MMAPPH1FCFS: Unknown parameter "+str(argv[argIx])) argIx += 1 if len(Ret)==1: return Ret[0] else: return Ret
def SPIRIT(streams, energyThresh, lamb, evalMetrics): # Make if type(streams) == np.ndarray: streams_iter = iter(streams) # Max No. Streams if streams.ndim == 1: streams = np.expand_dims(streams, axis=1) num_streams = streams.shape[1] else: num_streams = streams.shape[1] count_over = 0 count_under = 0 #=============================================================================== # Initalise k, w and d, lamb #=============================================================================== k = 1 # Hidden Variables, initialise to one # Weights pc_weights = npm.zeros(num_streams) pc_weights[0, 0] = 1 # initialise outputs res = {} all_weights = [] k_hist = [] anomalies = [] x_dash = npm.zeros((1, num_streams)) Eng = mat([0.00000001, 0.00000001]) E_xt = 0 # Energy of X at time t E_rec_i = mat([0.000000000000001]) # Energy of reconstruction Y = npm.zeros(num_streams) timeSteps = streams.shape[0] #=============================================================================== # Main Loop #=============================================================================== for t in range(1, timeSteps + 1): # t = 1,...,200 k_hist.append(k) x_t_plus_1 = mat(streams_iter.next()) # Read in next signals d_i = E_rec_i * t # Step 1 - Update Weights pc_weights, y_t_i, error = track_W(x_t_plus_1, k, pc_weights, d_i, num_streams, lamb) # Record hidden variables padding = num_streams - k y_bar_t = npm.hstack((y_t_i, mat([nan] * padding))) Y = npm.vstack((Y, y_bar_t)) # Record Weights all_weights.append(pc_weights) # Record reconstrunted z and RSRE x_dash = npm.vstack((x_dash, y_t_i * pc_weights)) # Record RSRE if t == 1: top = 0.0 bot = 0.0 top = top + (norm(x_t_plus_1 - x_dash)**2) bot = bot + (norm(x_t_plus_1)**2) new_RSRE = top / bot if t == 1: RSRE = new_RSRE else: RSRE = npm.vstack((RSRE, new_RSRE)) ### FOR EVALUATION ### #deviation from truth if evalMetrics == 'T': Qt = pc_weights.T if t == 1: res['subspace_error'] = npm.zeros((timeSteps, 1)) res['orthog_error'] = npm.zeros((timeSteps, 1)) res['angle_error'] = npm.zeros((timeSteps, 1)) Cov_mat = npm.zeros([num_streams, num_streams]) # Calculate Covarentce Matrix of data up to time t Cov_mat = lamb * Cov_mat + npm.dot(x_t_plus_1, x_t_plus_1.T) # Get eigenvalues and eigenvectors W, V = eig(Cov_mat) # Use this to sort eigenVectors in according to deccending eigenvalue eig_idx = W.argsort() # Get sort index eig_idx = eig_idx[::-1] # Reverse order (default is accending) # v_r = highest r eigen vectors (accoring to thier eigenvalue if sorted). V_k = V[:, eig_idx[:k]] # Calculate subspace error C = npm.dot(V_k, V_k.T) - npm.dot(Qt, Qt.T) res['subspace_error'][t - 1, 0] = 10 * np.log10( npm.trace(npm.dot(C.T, C))) #frobenius norm in dB # Calculate angle between projection matrixes D = npm.dot(npm.dot(npm.dot(V_k.T, Qt), Qt.T), V_k) eigVal, eigVec = eig(D) angle = npm.arccos(np.sqrt(max(eigVal))) res['angle_error'][t - 1, 0] = angle # Calculate deviation from orthonormality F = npm.dot(Qt.T, Qt) - npm.eye(k) res['orthog_error'][t - 1, 0] = 10 * np.log10( npm.trace(npm.dot(F.T, F))) #frobenius norm in dB # Step 2 - Update Energy estimate E_xt = ((lamb * (t - 1) * E_xt) + norm(x_t_plus_1)**2) / t for i in range(k): E_rec_i[0, i] = ((lamb * (t - 1) * E_rec_i[0, i]) + (y_t_i[0, i]**2)) / t # Step 3 - Estimate the retained energy E_retained = npm.sum(E_rec_i, 1) # Record Energy Eng_new = npm.hstack((E_xt, E_retained[0, 0])) Eng = npm.vstack((Eng, Eng_new)) if E_retained < energyThresh[0] * E_xt: if k != num_streams: k = k + 1 # Initalise Ek+1 <-- 0 E_rec_i = npm.hstack((E_rec_i, mat([0]))) # Initialise W_i+1 new_weight_vec = npm.zeros(num_streams) new_weight_vec[0, k - 1] = 1 pc_weights = npm.vstack((pc_weights, new_weight_vec)) anomalies.append(t - 1) else: count_over += 1 elif E_retained > energyThresh[1] * E_xt: if k > 1: k = k - 1 # discard w_k and error pc_weights = delete(pc_weights, -1, 0) # Discard E_rec_i[k] E_rec_i = delete(E_rec_i, -1) else: count_under += 1 # Data Stores res2 = { 'hidden': Y, # Array for hidden Variables 'weights': all_weights, 'E_t': Eng[:, 0], # total energy of data 'E_dash_t': Eng[:, 1], # hidden var energy 'e_ratio': np.divide(Eng[:, 1], Eng[:, 0]), # Energy ratio 'RSRE': RSRE, # Relative squared Reconstruction error 'recon': x_dash, # reconstructed data 'r_hist': k_hist, # history of r values 'anomalies': anomalies } res.update(res2) return res, all_weights