def test(): obj = mt.get_state() mt.set_state(obj) obj2 = mt.get_state() if (obj2[1] - obj[1]).any(): raise SystemExit("Failed seed test.") print("First random number is", random()) print("Average of 10000 random numbers is", np.sum(random(10000),axis=0)/10000.) x = random([10,1000]) if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: raise SystemExit("random returned wrong shape") x.shape = (10000,) print("Average of 100 by 100 random numbers is", np.sum(x,axis=0)/10000.) y = uniform(0.5,0.6, (1000,10)) if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10: raise SystemExit("uniform returned wrong shape") y.shape = (10000,) if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6: raise SystemExit("uniform returned out of desired range") print("randint(1, 10, shape=[50])") print(randint(1, 10, shape=[50])) print("permutation(10)", permutation(10)) print("randint(3,9)", randint(3,9)) print("random_integers(10, shape=[20])") print(random_integers(10, shape=[20])) s = 3.0 x = normal(2.0, s, [10, 1000]) if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: raise SystemExit("standard_normal returned wrong shape") x.shape = (10000,) mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0) x = exponential(3, 10000) mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2) x = multivariate_normal(np.array([10,20]), np.array(([1,2],[2,4]))) print("\nA multivariate normal", x) if x.shape != (2,): raise SystemExit("multivariate_normal returned wrong shape") x = multivariate_normal(np.array([10,20]), np.array([[1,2],[2,4]]), [4,3]) print("A 4x3x2 array containing multivariate normals") print(x) if x.shape != (4,3,2): raise SystemExit("multivariate_normal returned wrong shape") x = multivariate_normal(np.array([-100,0,100]), np.array([[3,2,1],[2,2,1],[1,1,1]]), 10000) x_mean = np.sum(x,axis=0)/10000. print("Average of 10000 multivariate normals with mean [-100,0,100]") print(x_mean) x_minus_mean = x - x_mean print("Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]") print(np.dot(np.transpose(x_minus_mean),x_minus_mean)/9999.) x = beta(5.0, 10.0, 10000) mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) x = gamma(.01, 2., 10000) mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100) x = chi_square(11., 10000) mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*np.sqrt(2./11.)) x = F(5., 10., 10000) mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) x = poisson(50., 10000) mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14) print("\nEach element is the result of 16 binomial trials with probability 0.5:") print(binomial(16, 0.5, 16)) print("\nEach element is the result of 16 negative binomial trials with probability 0.5:") print(negative_binomial(16, 0.5, [16,])) print("\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:") x = multinomial(16, [0.1, 0.5, 0.1], 8) print(x) print("Mean = ", np.sum(x,axis=0)/8.)
def test(): obj = mt.get_state() mt.set_state(obj) obj2 = mt.get_state() if (obj2[1] - obj[1]).any(): raise SystemExit, "Failed seed test." print "First random number is", random() print "Average of 10000 random numbers is", np.sum(random(10000), axis=0) / 10000. x = random([10, 1000]) if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: raise SystemExit, "random returned wrong shape" x.shape = (10000, ) print "Average of 100 by 100 random numbers is", np.sum(x, axis=0) / 10000. y = uniform(0.5, 0.6, (1000, 10)) if len(y.shape) != 2 or y.shape[0] != 1000 or y.shape[1] != 10: raise SystemExit, "uniform returned wrong shape" y.shape = (10000, ) if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6: raise SystemExit, "uniform returned out of desired range" print "randint(1, 10, shape=[50])" print randint(1, 10, shape=[50]) print "permutation(10)", permutation(10) print "randint(3,9)", randint(3, 9) print "random_integers(10, shape=[20])" print random_integers(10, shape=[20]) s = 3.0 x = normal(2.0, s, [10, 1000]) if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: raise SystemExit, "standard_normal returned wrong shape" x.shape = (10000, ) mean_var_test( x, "normally distributed numbers with mean 2 and variance %f" % (s**2, ), 2, s**2, 0) x = exponential(3, 10000) mean_var_test( x, "random numbers exponentially distributed with mean %f" % (s, ), s, s**2, 2) x = multivariate_normal(np.array([10, 20]), np.array(([1, 2], [2, 4]))) print "\nA multivariate normal", x if x.shape != (2, ): raise SystemExit, "multivariate_normal returned wrong shape" x = multivariate_normal(np.array([10, 20]), np.array([[1, 2], [2, 4]]), [4, 3]) print "A 4x3x2 array containing multivariate normals" print x if x.shape != (4, 3, 2): raise SystemExit, "multivariate_normal returned wrong shape" x = multivariate_normal(np.array([-100, 0, 100]), np.array([[3, 2, 1], [2, 2, 1], [1, 1, 1]]), 10000) x_mean = np.sum(x, axis=0) / 10000. print "Average of 10000 multivariate normals with mean [-100,0,100]" print x_mean x_minus_mean = x - x_mean print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]" print np.dot(np.transpose(x_minus_mean), x_minus_mean) / 9999. x = beta(5.0, 10.0, 10000) mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) x = gamma(.01, 2., 10000) mean_var_test(x, "gamma(.01,2.) random numbers", 2 * 100, 2 * 100 * 100) x = chi_square(11., 10000) mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2 * np.sqrt(2. / 11.)) x = F(5., 10., 10000) mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) x = poisson(50., 10000) mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14) print "\nEach element is the result of 16 binomial trials with probability 0.5:" print binomial(16, 0.5, 16) print "\nEach element is the result of 16 negative binomial trials with probability 0.5:" print negative_binomial(16, 0.5, [ 16, ]) print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:" x = multinomial(16, [0.1, 0.5, 0.1], 8) print x print "Mean = ", np.sum(x, axis=0) / 8.