def test():
    obj = mt.get_state()
    mt.set_state(obj)
    obj2 = mt.get_state()
    if (obj2[1] - obj[1]).any():
        raise SystemExit("Failed seed test.")
    print("First random number is", random())
    print("Average of 10000 random numbers is", np.sum(random(10000),axis=0)/10000.)
    x = random([10,1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit("random returned wrong shape")
    x.shape = (10000,)
    print("Average of 100 by 100 random numbers is", np.sum(x,axis=0)/10000.)
    y = uniform(0.5,0.6, (1000,10))
    if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10:
        raise SystemExit("uniform returned wrong shape")
    y.shape = (10000,)
    if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6:
        raise SystemExit("uniform returned out of desired range")
    print("randint(1, 10, shape=[50])")
    print(randint(1, 10, shape=[50]))
    print("permutation(10)", permutation(10))
    print("randint(3,9)", randint(3,9))
    print("random_integers(10, shape=[20])")
    print(random_integers(10, shape=[20]))
    s = 3.0
    x = normal(2.0, s, [10, 1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit("standard_normal returned wrong shape")
    x.shape = (10000,)
    mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0)
    x = exponential(3, 10000)
    mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2)
    x = multivariate_normal(np.array([10,20]), np.array(([1,2],[2,4])))
    print("\nA multivariate normal", x)
    if x.shape != (2,): raise SystemExit("multivariate_normal returned wrong shape")
    x = multivariate_normal(np.array([10,20]), np.array([[1,2],[2,4]]), [4,3])
    print("A 4x3x2 array containing multivariate normals")
    print(x)
    if x.shape != (4,3,2): raise SystemExit("multivariate_normal returned wrong shape")
    x = multivariate_normal(np.array([-100,0,100]), np.array([[3,2,1],[2,2,1],[1,1,1]]), 10000)
    x_mean = np.sum(x,axis=0)/10000.
    print("Average of 10000 multivariate normals with mean [-100,0,100]")
    print(x_mean)
    x_minus_mean = x - x_mean
    print("Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]")
    print(np.dot(np.transpose(x_minus_mean),x_minus_mean)/9999.)
    x = beta(5.0, 10.0, 10000)
    mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014)
    x = gamma(.01, 2., 10000)
    mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100)
    x = chi_square(11., 10000)
    mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*np.sqrt(2./11.))
    x = F(5., 10., 10000)
    mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35)
    x = poisson(50., 10000)
    mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14)
    print("\nEach element is the result of 16 binomial trials with probability 0.5:")
    print(binomial(16, 0.5, 16))
    print("\nEach element is the result of 16 negative binomial trials with probability 0.5:")
    print(negative_binomial(16, 0.5, [16,]))
    print("\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:")
    x = multinomial(16, [0.1, 0.5, 0.1], 8)
    print(x)
    print("Mean = ", np.sum(x,axis=0)/8.)
Пример #2
0
def test():
    obj = mt.get_state()
    mt.set_state(obj)
    obj2 = mt.get_state()
    if (obj2[1] - obj[1]).any():
        raise SystemExit, "Failed seed test."
    print "First random number is", random()
    print "Average of 10000 random numbers is", np.sum(random(10000),
                                                       axis=0) / 10000.
    x = random([10, 1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit, "random returned wrong shape"
    x.shape = (10000, )
    print "Average of 100 by 100 random numbers is", np.sum(x, axis=0) / 10000.
    y = uniform(0.5, 0.6, (1000, 10))
    if len(y.shape) != 2 or y.shape[0] != 1000 or y.shape[1] != 10:
        raise SystemExit, "uniform returned wrong shape"
    y.shape = (10000, )
    if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6:
        raise SystemExit, "uniform returned out of desired range"
    print "randint(1, 10, shape=[50])"
    print randint(1, 10, shape=[50])
    print "permutation(10)", permutation(10)
    print "randint(3,9)", randint(3, 9)
    print "random_integers(10, shape=[20])"
    print random_integers(10, shape=[20])
    s = 3.0
    x = normal(2.0, s, [10, 1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit, "standard_normal returned wrong shape"
    x.shape = (10000, )
    mean_var_test(
        x,
        "normally distributed numbers with mean 2 and variance %f" % (s**2, ),
        2, s**2, 0)
    x = exponential(3, 10000)
    mean_var_test(
        x, "random numbers exponentially distributed with mean %f" % (s, ), s,
        s**2, 2)
    x = multivariate_normal(np.array([10, 20]), np.array(([1, 2], [2, 4])))
    print "\nA multivariate normal", x
    if x.shape != (2, ):
        raise SystemExit, "multivariate_normal returned wrong shape"
    x = multivariate_normal(np.array([10, 20]), np.array([[1, 2], [2, 4]]),
                            [4, 3])
    print "A 4x3x2 array containing multivariate normals"
    print x
    if x.shape != (4, 3, 2):
        raise SystemExit, "multivariate_normal returned wrong shape"
    x = multivariate_normal(np.array([-100, 0, 100]),
                            np.array([[3, 2, 1], [2, 2, 1], [1, 1, 1]]), 10000)
    x_mean = np.sum(x, axis=0) / 10000.
    print "Average of 10000 multivariate normals with mean [-100,0,100]"
    print x_mean
    x_minus_mean = x - x_mean
    print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]"
    print np.dot(np.transpose(x_minus_mean), x_minus_mean) / 9999.
    x = beta(5.0, 10.0, 10000)
    mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014)
    x = gamma(.01, 2., 10000)
    mean_var_test(x, "gamma(.01,2.) random numbers", 2 * 100, 2 * 100 * 100)
    x = chi_square(11., 10000)
    mean_var_test(x, "chi squared random numbers with 11 degrees of freedom",
                  11, 22, 2 * np.sqrt(2. / 11.))
    x = F(5., 10., 10000)
    mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25,
                  1.35)
    x = poisson(50., 10000)
    mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14)
    print "\nEach element is the result of 16 binomial trials with probability 0.5:"
    print binomial(16, 0.5, 16)
    print "\nEach element is the result of 16 negative binomial trials with probability 0.5:"
    print negative_binomial(16, 0.5, [
        16,
    ])
    print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:"
    x = multinomial(16, [0.1, 0.5, 0.1], 8)
    print x
    print "Mean = ", np.sum(x, axis=0) / 8.