Пример #1
0
def sample_ext_length(lamb=1/250.0,min_seq_length=75,alpha=None):
    """Given a read that extends for (at least) min_seq_length, sample the
distance it extends past the end of the sequenced read.

    If the position of the TF is inside the sequenced portion, then
    the endpoint of the fragment is distributed as Exp(lamb).  If the
    position of the TF is outside the sequenced portion, however, then
    the endpoint is distributed as Exp(lamb) + Exp(lamb) =
    Gamma(lamb,2).  We therefore model the distribution of the
    fragment endpoint as a mixture model:

    endpoint ~ alpha*Exp(lamb) + (1-alpha)*Gamma(lamb,2)

    where the mixing parameter alpha is the probability that the TF
    resides within the sequenced portion.  We assume that this probability can be described as:

    <sequenced_length/total_length>,

    where the expectation is taken with respect to the total length of
    the fragment, which is distributed exponentially.
    """
    if alpha is None:
        alpha = sum(min_seq_length/float(min_seq_length+ell)*lamb*exp(-lamb*ell) for ell in xrange(100000))
        alpha = 0.3
    if random.random() < alpha:
        # TF resides in binding_site
        ext_length = nprand.geometric(lamb)
    else:
        ext_length = nprand.geometric(lamb) + nprand.geometric(lamb)
    return ext_length
Пример #2
0
  def __init__(self,source):
    self.source = source #System idnum
    distance = random.geometric(p=0.2,size=1) #At present, all warp gates go FORWARD
    self.destination = source+distance[0]

    #Determine the initial sequence
    self.chart_sequence = []
    draws = random.geometric(p=0.5,size=int(log2(distance)+log2(abs(self.destination))))
Пример #3
0
def generateRandomInt():
    """Generates a random integer. Uses a geometric distribution.

  Returns:
    An integer that is chosen that has a 50% chance of being 0 or greater, and a 50% chance of being negative.
  """
    if random() > 0.5:
        return geometric(p=0.5)
    else:
        return -(1 + geometric(p=0.5))
def span_corrupting(tokenized_sent: List[str],
                    max_length: int = 5,
                    prob: float = 0.25):
    max_length = min(len(tokenized_sent) // 2 + 1, max_length)
    span_length = geometric(prob)
    while span_length > max_length or span_length < 2:
        span_length = int(geometric(prob))

    start_point = randint(0, len(tokenized_sent) - span_length + 1)
    return tokenized_sent[:start_point + 1] + tokenized_sent[start_point +
                                                             span_length:]
Пример #5
0
 def _mutate_i(self, individual):
     eta = np.array(individual[self._id_eta])
     if len(self._id_eta) == 1:
         eta = max(1, eta * exp(self.tau_i * randn()))
         p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i) ** 2))
         individual[self.id_i] = np.array(individual[self.id_i]) + \
             geometric(p, self.N_i) - geometric(p, self.N_i)
     else:
         eta = eta * exp(self.tau_i * randn() + self.tau_p_i * randn(self.N_i))
         eta[eta > 1] = 1
         p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i) ** 2))
         individual[self.id_i] = np.array(individual[self.id_i]) + \
             np.array([geometric(p_) - geometric(p_) for p_ in p])
     individual[self._id_eta] = eta
Пример #6
0
def loi_geom(nb_val, param1, barres, pas):

    # Loi pratique (valeurs aleatoires)
    xp = loi.geometric(param1, size=nb_val)

    # Normalisation
    mini = 0
    maxi = nb_val
    p = param1

    # Loi theorique
    vec = np.arange(mini, maxi, pas)
    xt = loiT.geom.pmf(vec, p)  # A COMPLETER...

    # Affichage
    plt.figure()
    plt.hist(xp, barres, density=True, label='resultat pratique')
    plt.plot(
        vec, xt, 'r',
        label='resultat theorique')  # A MODIFIER dans le cas discret par 'or'
    plt.title('Loi Geometrique')  # A COMPLETER...
    plt.xlabel('Intervalles')
    plt.ylabel('Probabilites')
    plt.legend()
    plt.show()
Пример #7
0
def generateRandomNonNegInt():
    """Generates a random integer that is greater than or equal to 0. Uses a geometric distribution.

  Returns:
    A value chosen using a geometric distribution with p=5, starting  at 0.
  """
    return geometric(p=0.5)
Пример #8
0
def get_householdsizes(n, p=0.5, dist=None):
    """
    Return a sample of the sizes of n households, either from a geometric distribution with parameter p, or from a fixed
    frequency distribution dist.
    :param n: int, number of households
    :param p: parameter of geometric distribution
    :param dist: frequencies of household sizes
    :return:
    """
    if dist is None:
        households = npr.geometric(p, size=n)
        return households

    else:
        dist = np.array(dist)
        try:
            households = npr.choice(np.arange(1,
                                              len(dist) + 1),
                                    size=n,
                                    p=dist)

        except ValueError:
            dist = dist / dist.sum()
            households = npr.choice(np.arange(1,
                                              len(dist) + 1),
                                    size=n,
                                    p=dist)

        return households
Пример #9
0
 def test_geometric(self):
     pymc3_random_discrete(
         Geometric,
         {'p': Unit},
         size=500,  # Test always fails with larger sample sizes.
         fails=50,  # Be a bit more generous.
         ref_rand=lambda size, p=None: nr.geometric(p, size=size))
Пример #10
0
    def compact(self):
        if (self.numCompaction%2==1 and self.alternate):
            self.offset = 1 - self.offset
        else:
            self.offset = int(random() < 0.5)

        self.sort()
        s = geometric(self.eps)
        while s+1 >= len(self)//2:
            s = self.k + geometric(self.eps)
        s1 = len(self)//2 - s
        s2 = len(self)//2 + s
        for i in range(s1+self.offset, s2, 2):
            yield self[i]
        del self[s1:s2]
        self.numCompaction += 1
Пример #11
0
    def get_assignment_context(request):
        """ Get a random task of the specified type."""
        worker_id = request.GET.get('worker_id')
        task_type = request.GET.get('task_type')
        eligible_tasks = (
            InternalCrowdInterface.get_eligible_tasks(worker_id).filter(
                task_type=task_type).order_by('create_time'))

        # Pick a random task, biased towards older tasks.
        task_index = min(
            geometric(ORDER_WEIGHT) - 1,
            eligible_tasks.count() - 1)

        # generate a random assignment id for this assignment.
        assignment_id = uuid.uuid4()

        return {
            'task_id':
            (eligible_tasks[task_index].task_id if task_index >= 0 else None),
            'worker_id':
            worker_id,
            'is_accepted':
            True,
            'assignment_id':
            assignment_id,
        }
Пример #12
0
    def _get_genome_amounts_geometric_fix(num_real_genomes, max_genome_amount):
        """
		Get amounts of genomes by original genome

		@param num_real_genomes: exact number of real genomes
		@type num_real_genomes: int | long
		@param max_genome_amount: Total number of genomes
		@type max_genome_amount: int | long

		@return: List of integers representing amount of strains
		@rtype: list[int]
		"""
        assert isinstance(num_real_genomes, (int, long))
        assert isinstance(max_genome_amount, (int, long))

        final_amounts = [1] * num_real_genomes
        index = 0
        while index < len(final_amounts):
            if sum(final_amounts) >= max_genome_amount:
                break
            final_amounts[index] += min(1 + np_random.geometric(0.3), 10)
            index += 1

        final_amounts[index - 1] -= sum(final_amounts) - max_genome_amount
        return final_amounts
Пример #13
0
def atm2bank(atm, bank):

    #handle hanshake
    bank.sendall(atm.recv(4096))

    #handle msg
    bank.sendall(atm.recv(4096))
    # which packet to drop?
    if DISTRIBUTION == 'G':
        commit_num = geometric(1 - pow(10.0, -3 / float(MAX_COMMIT)))
    elif DISTRIBUTION == 'U':
        commit_num = random_integers(MAX_COMMIT - 1)
    else:
        commit_num = StrongRandom().randint(MIN_COMMIT, MAX_COMMIT)

    # print "here"
    logger.info('[+] Nombre commits guessed: {0}'.format(commit_num))

    pck = 1
    # commit protocol
    while True:
        b = recv(atm)
        if not b:
            break

        if pck != commit_num:
            bank.sendall(b)
        else:
            logger.debug("Attacking!!!")
        pck += 1
    return
    def test_likelihood_kernel(self):

        eig_vals = 1 + rndm.geometric(p=0.5, size=self.rank)
        eig_vecs, _ = qr(rndm.randn(self.N, self.rank), mode='economic')

        dpp = FiniteDPP(kernel_type='likelihood',
                        projection=False,
                        **{'L': (eig_vecs * eig_vals).dot(eig_vecs.T)})

        for size in self.sizes:

            for mode in ('GS', 'GS_bis', 'KuTa12'):

                dpp.flush_samples()
                for _ in range(self.nb_samples):
                    dpp.sample_exact_k_dpp(size, mode)

                self.check_right_cardinality(dpp, dpp.list_of_samples)

            for mode in ('AED', 'AD'):

                dpp.flush_samples()
                dpp.sample_mcmc_k_dpp(size,
                                      **{'nb_iter': self.nb_samples})

                self.check_right_cardinality(dpp, dpp.list_of_samples[0])
Пример #15
0
    def _get_genome_amounts_geometric(probability, max_genome_amount):
        """
		Get amounts of genomes by original genome

		@param probability: Proportion of simulated original genomes
		@type probability: int | long | float
		@param max_genome_amount: Total number of genomes
		@type max_genome_amount: int | long

		@return: List of integers representing amount of strains
		@rtype: list[int]
		"""
        assert isinstance(probability, (int, long, float))
        assert 0 <= probability <= 1
        assert isinstance(max_genome_amount, (int, long))

        final_amounts = []
        while sum(final_amounts) < max_genome_amount:
            if random.uniform(0, 1) < probability:
                final_amounts.append(1)
            else:
                amount = min(1 + np_random.geometric(0.3), 10)
                final_amounts.append(amount)

        final_amounts[-1] -= sum(final_amounts) - max_genome_amount
        return final_amounts
Пример #16
0
 def _mutate_i(self, individual):
     eta = np.array(individual[self._id_eta])
     x = np.array(individual[self.id_i])
     if len(self._id_eta) == 1:
         eta = max(1, eta * exp(self.tau_i * randn()))
         p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i) ** 2))
         x_ = x + geometric(p, self.N_i) - geometric(p, self.N_i)
     else:
         eta = eta * exp(self.tau_i * randn() + self.tau_p_i * randn(self.N_i))
         eta[eta > 1] = 1
         p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i) ** 2))
         x_ = x + np.array([geometric(p_) - geometric(p_) for p_ in p])
     
     # TODO: implement the same step-size repairing method here
     x_ = boundary_handling(x_, self.bounds_i[:, 0], self.bounds_i[:, 1])
     individual[self._id_eta] = eta
     individual[self.id_i] = x_
Пример #17
0
    def set_vars(self):
        if "num_rounds" not in self.session.vars:
            self.session.vars["num_rounds"] = min(
                geometric(0.5) + Constants.base_rounds - 1,
                Constants.num_rounds)
            # -1 because of geometric vs first success definition

        self.session.vars['timed_out'] = False
Пример #18
0
def make_splits(G,lamb):
    splits = []
    i = 0
    while i < G:
        splits.append(i)
        i += nprand.geometric(lamb)
    splits.append(G)
    return splits
Пример #19
0
 def test_random(self):
   npr.seed(1)
   mean = 30
   for ii in range(1000):
     length = npr.geometric(1/(mean-2)) + 2
     binary1 = npr.rand(length) < 0.5
     gray    = binary2gray(binary1)
     binary2 = gray2binary(gray)
     nptest.assert_equal(binary1, binary2)
Пример #20
0
def map_otus_to_genomes(profile, per_rank_map, ranks, max_rank, mu, sigma, max_strains, debug, no_replace, max_genomes):
    unmatched_otus = []
    otu_genome_map = {}
    warnings = []
    sorted_otus = sort_by_abundance(profile)
    genome_set_size = 0
    for otu in sorted_otus:
        if genome_set_size >= max_genomes and no_replace: #cancel if no genomes are available anymore
            break
        lin, abundances = profile[otu]
        lineage = transform_lineage(lin, ranks, max_rank)
        if len(lineage) == 0:
            warnings.append("No matching NCBI ID for otu %s, scientific name %s" % (otu, lin[-1].split("__")[-1]))
            unmatched_otus.append(otu)
        lineage_ranks = ncbi.get_rank(lineage)
        for tax_id in lineage: # lineage sorted ascending
            rank = lineage_ranks[tax_id]
            if ranks.index(rank) > ranks.index(max_rank):
                warnings.append("Rank %s of OTU %s too high, no matching genomes found" % (rank, otu))
                warnings.append("Full lineage was %s, mapped from BIOM lineage %s" % (lineage, lin))
                unmatched_otus.append(otu)
                break
            genomes = per_rank_map[rank]
            if tax_id not in genomes:
                warnings.append("For OTU %s no genomes have been found on rank %s with ID %s" % (otu, rank, tax_id))
                continue # warning will appear later if rank is too high
            available_genomes = genomes[tax_id]
            strains_to_draw = max((np_rand.geometric(2./max_strains) % max_strains),1)
            if len(available_genomes) >= strains_to_draw:
                used_indices = np_rand.choice(len(available_genomes),strains_to_draw,replace=False)
                used_genomes = set([available_genomes[i] for i in used_indices])
            else:
                used_genomes = set(available_genomes) # if not enough genomes: use all
            genome_set_size += len(used_genomes) # how many genomes are used
            log_normal_vals = np_rand.lognormal(mu,sigma, len(used_genomes))
            sum_log_normal = sum(log_normal_vals)
            i = 0
            for path, genome_id in used_genomes:
                otu_id = otu + "." + str(i)
                otu_genome_map[otu_id] = (tax_id, genome_id, path, []) # taxid, genomeid, http path, abundances per sample
                relative_abundance = log_normal_vals[i]/sum_log_normal
                i += 1
                for abundance in abundances: # calculate abundance per sample
                    current_abundance = relative_abundance * abundance
                    otu_genome_map[otu_id][-1].append(current_abundance)
                if (no_replace): # sampling without replacement:
                    for new_rank in per_rank_map:
                        for taxid in per_rank_map[new_rank]:
                            if (path, genome_id) in per_rank_map[new_rank][taxid]:
                                per_rank_map[new_rank][taxid].remove((path,genome_id))
            break # genome(s) found: we can break
    if len(warnings) > 0:
        _log.warning("Some OTUs could not be mapped")
        if debug:
            for warning in warnings:
                _log.warning(warning)
    return otu_genome_map, unmatched_otus, per_rank_map
Пример #21
0
    def new_infection(self,
                      node_count,
                      generation,
                      household,
                      household_dict,
                      serial_interval=None):
        """
        Adds a new infection to the graph along with the following attributes:
        t - when they were infected
        offspring - how many offspring they produce
        
        Inputs::
        G - the network object
        time - the time when the new infection happens
        node_count - how many nodes are currently in the network
        """
        # Symptom onset time
        symptom_onset_time = self.time + self.incubation_period()
        # When a node reports it's infection
        if npr.binomial(1, self.infection_reporting_prob) == 1:
            will_report = True
            time_of_reporting = symptom_onset_time + npr.geometric(
                self.reporting_delay_par)
        else:
            will_report = False
            time_of_reporting = float('Inf')

        # We assign each node a recovery period of 21 days, after 21 days the probability of causing a new infections is 0, due to the generation time distribution
        recovery_time = self.time + 21

        # Give the node the required attributes
        self.G.add_node(node_count)
        new_node_dict = {
            "time_infected": self.time,
            "generation": generation,
            "household": household,
            "contact_traced": False,
            "isolated": household_dict[household]["isolated"],
            "symptom_onset": symptom_onset_time,
            "outside_house_contacts_made": 0,
            "had_contacts_traced": False,
            "spread_to": [],
            "serial_interval": serial_interval,
            "recovered": False,
            "recovery_time": recovery_time,
            "will_report_infection": will_report,
            "reporting_time": time_of_reporting,
            "has_trace_app": self.has_contact_tracing_app()
        }

        self.G.nodes[node_count].update(new_node_dict)

        # Updates to the household dictionary
        # Each house now stores a the ID's of which nodes are stored inside the house, so that quarantining can be done at the household level
        nodes_in_house = household_dict[household]['nodes']
        nodes_in_house.append(node_count)
        household_dict[household].update({'nodes': nodes_in_house})
Пример #22
0
def reads_from_ps(ps,mfl,min_seq_len,num_reads):
    """Given a vector of chromosomal occupancies and mean fragment length, return specified number of reads"""
    reads = []
    lamb = 1.0/mfl
    G = len(ps)
    sampler = inverse_cdf_sampler(ps)
    while len(reads) < num_reads:
        L,R = nprand.geometric(lamb),nprand.geometric(lamb) #can be optimized to gamma(2,lamb)
        if L + R < min_seq_len:
            continue
        i = sampler()
        start,stop = (i - L) % G, (i + R)%G
        strand = "+" if random.random() < 0.5 else "-"
        if strand == "+":
            reads.append((strand,start,(start+min_seq_len)%G))
        else:
            reads.append((strand,(stop-min_seq_len)%G,stop))
    return reads
Пример #23
0
def take_random_sample(file_name, prob):
    reader = csv.reader(
        open(file_name, 'r'),
        delimiter = '\t',
    )
    p = 0.01
    skip = random.geometric(p)
    lines = []
    spam_period = 10000
    for line in reader:
        skip -= 1
        if skip > 1:
            continue
        lines.append(line)
        if len(lines) % spam_period == 0:
            print len(lines)
        skip = random.geometric(p)
    pickle.dump(lines, open('training_sample.pickle', 'w'))
Пример #24
0
 def do_serve(self, serve_pdu):
     assert isinstance(serve_pdu, Pdu)
     err_p = random.random()
     dice = random.random()
     if dice < err_p:
         error = True
     else:
         error = False
     duration = random.geometric(0.1)
     return duration, error
Пример #25
0
 def infect(self, disease):
     """Infect this person with the given disease. This will change the person's state to INFECTED and calculate the time periods of this person's infection
     
     Arguments:
         disease {Disease} -- The disease that this person shall be infected with.
     """
     self.disease = disease
     self.status = SIR_Status.INFECTED
     self.infection = Infection(self, disease)
     self.survival_days = geometric(self.infection.daily_mortality)
Пример #26
0
def initial_walk_states(initial, actions, num_walks, p_stop=.1):
  #randint(1, 10)
  states = set()
  for i in range(num_walks):
    walk = initial_random_walk(initial, actions, steps=geometric(p_stop))
    #walk = initial_random_walk(initial, actions, steps=randint(1, 10))
    for state in walk:
      states.add(state)
    #states.add(walk[-1])
  return states
Пример #27
0
    def _mutate_i(self, individual):
        eta = np.asarray(individual[self._id_eta].tolist(), dtype="float")
        x = np.asarray(individual[self.id_i], dtype="int")
        if len(self._id_eta) == 1:
            eta = eta * exp(self.tau_i * randn())
        else:
            eta = eta * exp(self.tau_i * randn() +
                            self.tau_p_i * randn(self.N_i))
        eta[eta > 1] = 1

        p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i)**2.0))
        x_ = x + geometric(p) - geometric(p)

        # Interval Bounds Treatment
        x_ = np.asarray(handle_box_constraint(x_, self.bounds_i[:, 0],
                                              self.bounds_i[:, 1]),
                        dtype="int")
        individual[self.id_i] = x_
        individual[self._id_eta] = eta
def randomise(_epsilon, _sensitivity):
    _gamma = 1 / (1 + np.exp(_epsilon / 2))
    _sensitivity = 1
    sign = -1 if random() < 0.5 else 1
    geometric_rv = geometric(1 - np.exp(-_epsilon)) - 1
    unif_rv = random()
    binary_rv = 0 if random() < _gamma / (
        _gamma + (1 - _gamma) * np.exp(-_epsilon)) else 1
    return sign *((1-binary_rv)*((geometric_rv+ _gamma * unif_rv) * _sensitivity) + \
            binary_rv* ((geometric_rv +_gamma + (1-_gamma) *  unif_rv) * _sensitivity))
Пример #29
0
 def do_serve(self, serve_pdu):
     assert isinstance(serve_pdu, Pdu)
     err_p = random.random()
     dice = random.random()
     if dice < err_p:
         error = True
     else:
         error = False
     duration = random.geometric(0.1)
     return duration, error
Пример #30
0
def density_from_ps(ps,mfl,min_seq_len,num_reads):
    """

    This function combines reads_from_ps and density_from_reads.  For
    some reason, slightly slower than generating and mapping reads
    separately...

    """
    G = len(ps)
    lamb = 1.0/mfl
    fwd_map = np.zeros(G)
    rev_map = np.zeros(G)
    reads_so_far = 0
    sampler = inverse_cdf_sampler(ps)
    problematic_reads = 0
    while reads_so_far < num_reads:
        L,R = nprand.geometric(lamb),nprand.geometric(lamb) #can be optimized to gamma(2,lamb)
        if L + R < min_seq_len:
            continue
        reads_so_far += 1
        i = sampler()
        start,stop = (i - L) % G, (i + R)%G
        if random.random() < 0.5:
            strand = "+"
            stop = (start + min_seq_len) % G
        else:
            strand = "-"
            start = (stop - min_seq_len) % G
        if start < stop: #i.e. if read doesn't wrap around
            if strand == "+":
                fwd_map[start:stop] += 1
            else:
                rev_map[start:stop] += 1
        else:
            problematic_reads += 1
            if strand == "+":
                fwd_map[start:G] += 1
                fwd_map[0:stop] += 1
            else:
                rev_map[start:G] += 1
                rev_map[0:stop] += 1
    print "problematic reads:",problematic_reads
    return fwd_map,rev_map
Пример #31
0
   def __init__(self,arrival):
       self.arrival = arrival
       self.bags = npr.geometric(p=.8,size=1)
       self.total_time = 0 #adjust when leave station system_time - station time
       #need to adjust for arrival time
       self.checkin_time = 0
       self.security_time = 0
       self.gate_time = 0 #total_system_time - system time when leave security

       self.is_first_class = False
Пример #32
0
def centered_geometric(p, n=1, size=1):
    """
    Returns a sample from the geometric law of parameter p, whose
    variance has been reduced by taking the mean of n experiences.
    The std of the returned sample is s/sqrt(n) where s is the original
    std, i.e. s = sqrt(p(1-p)).
    """
    if isinstance(size, int):
        size = [size]
    size = [n] + list(size)
    return np.sum(rd.geometric(p, size), axis=0) / n
Пример #33
0
def geometric(list):
    n = len(list) - 1

    p = 1e-4  #4.3e-4 #find_zero(lambda(x): fun_to_zero(x,n,f),1.0/(n+1),1.0)

    i = nr.geometric(p) - 1

    if i > n:
        i = n

    return list[i]
    def randomise(self, value):
        self.check_inputs(value)

        sign = -1 if random() < 0.5 else 1
        geometric_rv = geometric(1 - np.exp(- self._epsilon)) - 1
        unif_rv = random()
        binary_rv = 0 if random() < self._gamma / (self._gamma + (1 - self._gamma) * np.exp(- self._epsilon)) else 1

        return value + sign * ((1 - binary_rv) * ((geometric_rv + self._gamma * unif_rv) * self._sensitivity) +
                               binary_rv * ((geometric_rv + self._gamma + (1 - self._gamma) * unif_rv) *
                                            self._sensitivity))
Пример #35
0
def geometric(list):
    n = len(list)-1
    
    p = 1e-4 #4.3e-4 #find_zero(lambda(x): fun_to_zero(x,n,f),1.0/(n+1),1.0)
    
    i = nr.geometric(p)-1

    if i > n:
        i = n

    return list[i]    
Пример #36
0
 def permute_values(self):
     '''
     Selects a value permutation for the whole game according the prior distribution.
     '''
     orig_perm = list(range(13))[::-1]
     prop_perm = []
     seed = geometric(p=0.25, size=13) - 1
     for s in seed:
         pop_i = len(orig_perm) - 1 - (s % len(orig_perm))
         prop_perm.append(orig_perm.pop(pop_i))
     return prop_perm
def test_data_gen_non_markovian_1_par():
    npr.seed(1)
    simulation = SIR_Selke(200,
                           0.008,
                           0.9,
                           5,
                           infection_period_distribution=npr.geometric)
    test_var = simulation.inf_periods

    npr.seed(1)
    test_var2 = npr.geometric(0.9, 200)
    assert all(test_var2 == test_var)
Пример #38
0
    def _mutate_i(self, X):
        n_point = X.shape[0]
        eta = np.array(X[:, self._id_eta], dtype=float).reshape(n_point, -1)
        X_ = np.array(X[:, self.id_i], dtype=int)

        if len(self._id_eta) == 1:
            eta *= exp(self.tau_i * randn(n_point, 1))
        else:
            eta *= exp(self.tau_i * randn(n_point, 1) + \
                self.tau_p_i * randn(n_point, self.N_i))

        eta[eta > 1] = 1
        p = 1 - (eta / self.N_i) / (1 + np.sqrt(1 + (eta / self.N_i)**2.))
        _X = X_ + geometric(p) - geometric(p)

        # Interval Bounds Treatment
        _X = handle_box_constraint(_X, self.bounds_i[:, 0], self.bounds_i[:,
                                                                          1])
        _X = _X.astype(int)

        X[:, self.id_i] = _X
        X[:, self._id_eta] = eta
    def compact(self):
        assert (len(self) >= self.capacity())

        if (self.numCompaction % 2 == 1 and self.alternate):
            self.offset = 1 - self.offset
        else:
            self.offset = int(random() < 0.5)

        self.sort()

        lastItem = None

        s = 0  # where the compaction starts; default is 0 for self.schedule == 'alwaysAll'
        secsToCompact = 0

        # choose a part to compact according to the selected schedule
        if self.schedule == 'deterministic' or self.schedule == 'randomized':
            if self.schedule == 'randomized':
                while True:
                    secsToCompact = geometric(0.5)
                    if (secsToCompact <= self.numSections):
                        break
            else:  #if self.schedule == 'deterministic'
                secsToCompact = trailing_zeros(self.numCompaction)
            s = int(
                2 / 3 * self.capacity()
            ) - secsToCompact * self.sectionSize  # 1/3 of capacity always compacted

            # make the number of sections larger
            if self.numCompaction > 2**self.numSections:
                self.numSections *= 2  # basically, doubling strategy on log_2 (number of compactions)

        elif self.schedule == 'alwaysHalf':
            s = int(self.capacity() / 2)
        #TODO randomizedSimple: set s uniformly and randomly in [0.25 * capacity(), 0.75 * capacity()], or sth like that

        assert (s < len(self) - 1)

        if ((len(self) - s) % 2 == 1):
            s += 1

        for i in range(s + self.offset, len(self), 2):
            yield self[i]
        print(
            f"compacting {s}:\t secsToComp {secsToCompact}\t height {self.height}\t capacity {self.capacity()}\t size {len(self)}\t secSize {self.sectionSize}\t numSecs {self.numSections}"
        )
        self[s:] = []
        print(f"compaction done: size {len(self)}")

        self.numCompaction += 1
Пример #40
0
 def select_pred_words_effectiveness(self, numWords=None):
     assert self.resp_words is not None
     # Add Predictive Words
     if self._pred_data_tickers is None:
         self.__add_pred_data_tickers()
     self.create_data_sorting_array()
     # Select How Many Words
     if numWords is None:
         numWords = geometric(PRED_COUNT_GEOMETRIC_PARAM) + PRED_COUNT_FLOOR
         # Select Words
     count = 0
     chosen = {}
     resp_word_names = [str(w) for w in self.resp_words]
     min_date = max([w.min_date for w in self.resp_words])
     max_date = min([w.max_date for w in self.resp_words])
     while (len(chosen) < numWords) and (count < numWords * 10):
         count += 1  # Avoid Infinite Loops
         # Select Words / Create Data Handle
         id_ = weighted_choice(self._pred_data_eff_array["prob"].iteritems(), self._total_prob)
         ticker = retrieve_DataSeriesTicker(self.hndl_DB.cursor, id_)
         hndl_Data = EMF_DataSeries_Handle(self.hndl_DB, ticker=ticker)
         # Select Words / Create Trans Handle
         hndl_Trns = EMF_Transformation_Handle(choice(self._pred_trns_ptrns))
         # Select Words / Create Trans Handle / Add Parameters to Trans Handle
         hndl_Trns.parameters = self.__create_random_trns_params_pred()
         # Select Words / Create Word Handle
         hndl_Word = EMF_WordSeries_Handle(self.hndl_DB, hndl_Data, hndl_Trns)
         # Select Words / Ensure Word Validity
         # Select Words / Ensure Word Validity / Make sure Word Isn't Response Word
         wordName = str(hndl_Word)
         if wordName in resp_word_names:
             continue
             # Select Words / Ensure Word Validity / Make sure Word Isn't Already Taken
         if wordName in chosen:
             continue
             # Select Words / Ensure Word Validity / Make sure Dates Don't Conflict
         min_challenger = hndl_Word.min_date
         if min_challenger >= max_date:
             continue
         max_challenger = hndl_Word.max_date
         if max_challenger <= min_date:
             continue
         min_date = max(min_date, min_challenger)
         max_date = min(max_date, max_challenger)
         # Select Words / Add Word to Set
         chosen[wordName] = hndl_Word
         log.info("WORDSELECT: Predictive Words: Chose {0}".format(wordName))  # TEST: Delete
     log.info("WORDSELECT: Predictive Words: Chose {0}".format(chosen.keys()))
     self._pred_words = chosen.values()
     return self.pred_words
    def test_instanciation_from_kernel(self):
        rank, N = 6, 10

        eig_vals = 1 + rndm.geometric(p=0.5, size=rank)
        eig_vecs, _ = qr(rndm.randn(N, rank), mode='economic')

        dpp = FiniteDPP(kernel_type='likelihood',
                        projection=False,
                        **{'L': (eig_vecs * eig_vals).dot(eig_vecs.T)})

        dpp.compute_K()
        K = (eig_vecs * (eig_vals / (1.0 + eig_vals))).dot(eig_vecs.T)

        self.assertTrue(np.allclose(dpp.K, K))
Пример #42
0
 def select_pred_words_random(self, numWords=None):
     assert self.resp_words is not None
     # Add Predictive Words
     if self._pred_data_tickers is None:
         self.__add_pred_data_tickers()
         # Select How Many Words
     if numWords is None:
         numWords = geometric(PRED_COUNT_GEOMETRIC_PARAM) + PRED_COUNT_FLOOR
     log.info("WORDSELECT: Predictive Words: Choosing {0} words".format(numWords))
     # Select Words
     count = 0
     chosen = {}
     resp_word_names = [
         str(w) for w in self.resp_words
     ]  # TODO: Can make this a one-time calculation to avoid repitition
     min_date = max([w.min_date for w in self.resp_words])
     max_date = min([w.max_date for w in self.resp_words])
     while (len(chosen) < numWords) and (count < numWords * 10):
         count += 1  # Avoid Infinite Loops
         # Select Words / Create Data Handle
         hndl_Data = EMF_DataSeries_Handle(self.hndl_DB, ticker=choice(self._pred_data_tickers))
         # Select Words / Create Trans Handle
         hndl_Trns = EMF_Transformation_Handle(choice(self._pred_trns_ptrns))
         # Select Words / Create Trans Handle / Add Parameters to Trans Handle
         hndl_Trns.parameters = self.__create_random_trns_params_pred()
         # Select Words / Create Word Handle
         hndl_Word = EMF_WordSeries_Handle(self.hndl_DB, hndl_Data, hndl_Trns)
         # Select Words / Ensure Word Validity
         # Select Words / Ensure Word Validity / Make sure Word Isn't Response Word
         wordName = str(hndl_Word)
         if wordName in resp_word_names:
             continue
             # Select Words / Ensure Word Validity / Make sure Word Isn't Already Taken
         if wordName in chosen:
             continue
             # Select Words / Ensure Word Validity / Make sure Dates Don't Conflict
         min_challenger = hndl_Word.min_date
         if min_challenger >= max_date:
             continue
         max_challenger = hndl_Word.max_date
         if max_challenger <= min_date:
             continue
         min_date = max(min_date, min_challenger)
         max_date = min(max_date, max_challenger)
         # Select Words / Add Word to Set
         chosen[wordName] = hndl_Word
     log.info("WORDSELECT: Predictive Words: Chose {0}".format(chosen.keys()))
     self._pred_words = chosen.values()
     return self.pred_words
def random_integer_partition(n, min_i):
    p = []
    
    x = float(exp(-3.14/sqrt(6.0*float(n))))
    
    good = False
    while not good:
        z = [0 for i in range(min_i-1)]
        z = z+[geometric(1-pow(x,i+1))-1 for i in range(min_i-1, n)]
        sum = 0 
        for i in range(min_i-1, n):
            sum = sum + (i+1)*z[i]
        good = sum==n
    
    p = [i+1 for i in range(n) for _ in range(z[i])]
    return p
Пример #44
0
	def select_pred_words_random(self, numWords=None):
		assert self._resp_word is not None
		# Add Predictive Words
		if self._pred_data_tickers is None:
			self.__add_pred_data_tickers()
		# Select How Many Words
		if numWords is None:
			numWords = geometric(PRED_COUNT_GEOMETRIC_PARAM) + PRED_COUNT_FLOOR
		log.info('WORDSELECT: Predictive Words: Choosing {0} words'.format(numWords))
		# Select Words
		count = 0
		chosen = {}
		min_date = self.resp_data_min_date
		if min_date is None: min_ = maxint
		max_date = self.resp_data_max_date
		if max_date is None: max_ = -maxint-1
		while (len(chosen) < numWords) and (count < numWords*10):
			count += 1 # Avoid Infinite Loops
			# Select Words / Create Data Handle
			ticker = choice(self._resp_data_tickers)
			hndl_Data = EMF_DataSeries_Handle(self.hndl_DB, ticker=ticker)
			# Select Words / Create Trans Handle
			hndl_Trns = EMF_Transformation_Handle(choice(self._pred_trns_ptrns))
			# Select Words / Create Trans Handle / Add Parameters to Trans Handle		
			hndl_Trns.parameters = self.__create_random_trns_params()
			# Select Words / Create Word Handle
			hndl_Word = EMF_WordSeries_Handle(self.hndl_DB, hndl_Data, hndl_Trns)
			# Select Words / Ensure Word Validity
			# Select Words / Ensure Word Validity / Make sure Word Isn't Response Word
			wordName = str(hndl_Word)
			if wordName == str(self._resp_word):
				continue
			# Select Words / Ensure Word Validity / Make sure Dates Don't Conflict
			min_challenger = hndl_Word.min_date
			if min_challenger >= max_date:
				continue
			max_challenger = hndl_Word.max_date
			if max_challenger <= min_date:
				continue
			min_date = max(min_date, min_challenger)
			max_date = min(max_date, max_challenger)
			# Select Words / Add Word to Set
			chosen[wordName] = hndl_Word
			log.info('WORDSELECT: Predictive Words: Chose {0}'.format(wordName)) # TEST: Delete
		log.info('WORDSELECT:Predictive Words: Chose {0}'.format(chosen.keys()))
		self._pred_words = chosen.values()
		return self.pred_words
Пример #45
0
def mapped_reads_from_chip_ps_np(ps,mean_frag_length,cells=10000):
    G = len(ps)
    genome = np.zeros(G)
    lamb = 1.0/mean_frag_length
    for cell in (xrange(cells)):
        print cell
        config = rfd_xs_np(ps)
        config_len = len(config)
        idx = 0
        l = 0
        r = 0
        while l < G and idx < config_len:
            #print l,r,idx,config[idx]
            l,r = r,r+nprand.geometric(lamb)
            if l <= config[idx] < r:
                #print "got hit"
                genome[l:r] += 1
                while idx < config_len and config[idx] < r:
                    idx += 1
    return genome
Пример #46
0
    def get_assignment_context(request):
        """ Get a random task of the specified type."""
        worker_id = request.GET.get('worker_id')
        task_type = request.GET.get('task_type')
        eligible_tasks = (InternalCrowdInterface.get_eligible_tasks(worker_id)
                          .filter(task_type=task_type)
                          .order_by('create_time'))

        # Pick a random task, biased towards older tasks.
        task_index = min(geometric(ORDER_WEIGHT) - 1,
                         eligible_tasks.count() - 1)

        # generate a random assignment id for this assignment.
        assignment_id = uuid.uuid4()

        return {
            'task_id': (eligible_tasks[task_index].task_id
                        if task_index >= 0 else None),
            'worker_id': worker_id,
            'is_accepted': True,
            'assignment_id': assignment_id,
        }
Пример #47
0
    def handle(self):

        if not self.secureRequest:
            return

        try:
            data = self.secureRequest.recv()
            logger.info('[+] {0} wrote: {1}'.format(self.client_address[0], data))

            if DISTRIBUTION == 'G':
                commit_num = geometric(1 - pow(10.0, -3 / float(MAX_COMMIT)))
            elif DISTRIBUTION == 'U':
                commit_num = random_integers(MAX_COMMIT - 1)
            else:
                commit_num = StrongRandom().randint(MIN_COMMIT, MAX_COMMIT)

            self.secureRequest.send(commit_num, True)
            self.secureRequest.commit(commit_num)

            logger.info('Banks says OK')
        except Exception as e:
            # Error in communication
            logger.critical('Bank says Failure')
Пример #48
0
 def getInstance(self):
     dist = self.dist
     p = self.params
     small_correction = random.random() * 0.001
     if dist == 'exponential':
         return random.exponential(p[0]) + small_correction
     elif dist == 'normal':
         return random.normal(p[0],p[1]) + small_correction
     elif dist == 'uniform':
         return random.uniform(p[0],p[1]) + small_correction
     elif dist == 'poisson':
         return random.poisson(p[0]) + small_correction
     elif dist == 'binomial':
         return random.binomial(p[0],p[1]) + small_correction
     elif dist == 'geometric':
         return random.geometric(p[0]) + small_correction
     elif dist == 'weibull':
         return random.weibull(p[0]) + small_correction
     elif dist == 'gamma':
         return random.gamma(p[0],p[1]) + small_correction
     elif dist == 'beta':
         return random.beta(p[0],p[1]) + small_correction
     elif dist == 'lognormal':
         return random.lognormal(p[0],p[1]) + small_correction
Пример #49
0
  def _sample_temp_hypers(self, 
                          th_curr, #current temporal hypers (for some k)
                          w,       #current GP (for some k)
                          Ztime,   #counts for Z 
                          log_py_curr = None, #if not none, do pseudo_marg
                          prop_scale  = .025,  #proposal scale for MH steps
                          jitter      = 1e-6, #jitter for gram mat
                          sig2_bias   = 25    #variance of bias term for W
                          ): 
    """ note that conditioned on Z, fitting W and cov hypers of W is like
    a simple Poisson regression proglem """
    
    ##
    ## If no log_py_curr estimate, do Whitened slice sample 
    ##
    if log_py_curr is None: 
      nu  = self._tkern.whiten_process(w[1:], th_curr, self._grids[-1])
      def whitened_log_like(th, nu=nu):
        ll_prior = self._tkern.hyper_prior_lnpdf(th)
        if ll_prior < -1e50:
          return -np.inf
        logW = w[0] + np.log(self._dt) + \
               self._tkern.gen_prior(th, self._grids[-1], nu=nu)
        ll   = np.sum( logW*Ztime - np.exp(logW) )  
        return ll + ll_prior
      th_curr = slice_sample(th_curr, whitened_log_like)
      w[1:]   = self._tkern.gen_prior(th_curr, self._grids[-1], nu=nu)
      return th_curr, w

    ##
    ## otherwise Sample covariance hypers with PSEUDOMARGINAL method
    ##
    #gen proposal, stop early if it's out of bounds
    for nn in range(1):
      th_prop = th_curr.copy() 
      for i,hyper_name in enumerate(self._tkern.hyper_names()):
        if hyper_name=="Period":         # special proposal for periodic params
          jump_prop=False
          if npr.rand() < .5:
            jump_prop=True
            factor = npr.geometric(p=.5) + 1  
            if npr.rand() < .5: 
                factor = 1./factor
            th_prop[i] = factor * th_curr[i] + .05*npr.randn()
          else: 
            th_prop[i] = th_curr[i] + prop_scale*npr.randn()
        else: 
          th_prop[i] = th_curr[i] + prop_scale*npr.randn()

      #prior prob of hypers, stop early if it's no bueno
      log_prior_prop = self._tkern.hyper_prior_lnpdf(th_prop)
      if log_prior_prop < -1e20: 
        continue
        #return th_curr, w, log_py_curr

      #likelihood function 
      def bias_ll(y, f, cK_inv, grad=False, hess=False, hessp=False, p=None):
        return poisson_log_like(y, f, cK_inv, f0=np.log(self._dt), 
                                   grad=grad, hess=hess, hessp=hessp, p=p) 

      #compute current log marginal like (important, because Z changes)
      tgrid = self._grids[-1]
      N     = len(tgrid)
      K_curr = ( self._tkern.K(tgrid, tgrid, th_curr) + #temp covariance
                 jitter*np.eye(N) +                 #jitter for num stability
                 sig2_bias*np.ones((N,N)) )         #prior uncertainty from bias

      #compute log marginal like
      K_prop = ( self._tkern.K(tgrid, tgrid, th_prop) + #temp covariance
                 jitter*np.eye(N) +                 #jitter for num stability
                 sig2_bias*np.ones((N,N)) )         #prior uncertainty from bias

      log_py_curr = approx_log_marg_like( Ztime, K_curr, like_func=bias_ll )
      log_py_prop = approx_log_marg_like( Ztime, K_prop, like_func = bias_ll )
      #print "period: ", th_prop
      #print "length: ", ell_prop
      #print log_py_prop - log_py_curr
      rat = ( log_py_prop - log_py_curr +
              log_prior_prop - self._tkern.hyper_prior_lnpdf(th_curr) )
      if np.log(npr.rand()) < rat: 
          print "accepting temporal proposal"
          self._num_accepts += 1 
          th_curr = th_prop
          log_py_curr = log_py_prop
    return th_curr, w, log_py_curr
Пример #50
0
 def __init__(self, arrival, is_first_class):
     self.arrival = arrival
     self.is_first_class = is_first_class
     self.bags = npr.geometric(p=.6,size=1)
     self.total_time = 0
     self.flight_time = None
Пример #51
0
    def game_loop(self):
        '''This is called every game tick.  You call this in a loop
        until it returns false, which means you hit a tree trunk, fell
        off the bottom of the screen, or jumped off the top of the
        screen.  It calls the action and reward callbacks.'''

        # Render the background.
        self.screen.blit(self.background_img, (self.iter,0))
        if self.iter < self.background_img.get_width() - self.screen_width:
            self.screen.blit(self.background_img, (self.iter+self.background_img.get_width(),0))

        # Perhaps generate a new tree.
        if self.next_tree <= 0:
            self.next_tree = self.tree_img.get_width() + int(npr.geometric(1.0/self.tree_mean))
            self.trees.append( { 'x': self.screen_width+1,
                                 'y': int((0.3 + npr.rand()*0.65)*(self.screen_height-self.tree_gap)),
                                 's': False })
        # Process input events.
        for event in pg.event.get():
            if event.type == pg.QUIT:
                sys.exit()
            elif self.action_fn is None and event.type == pg.KEYDOWN:
                self.vel = npr.poisson(self.impulse)
                self.hook = self.screen_width

        # Perhaps take an action via the callback.
        if self.action_fn is not None and self.action_fn(self.get_state()):
            self.vel = npr.poisson(self.impulse)
            self.hook = self.screen_width

        # Eliminate trees that have moved off the screen.
        self.trees = filter(lambda x: x['x'] > -self.tree_img.get_width(), self.trees)

        # Monkey dynamics
        self.monkey_loc -= self.vel
        self.vel        -= self.gravity

        # Current monkey bounds.
        monkey_top = self.monkey_loc - self.monkey_img.get_height()/2
        monkey_bot = self.monkey_loc + self.monkey_img.get_height()/2

        # Move trees to the left, render and compute collision.
        self.next_tree -= self.horz_speed
        edge_hit = False
        tree_hit = False
        pass_tree = False
        for tree in self.trees:
            tree['x'] -= self.horz_speed

            # Render tree.
            self.screen.blit(self.tree_img, (tree['x'], self.tree_offset))

            # Render gap in tree.
            self.screen.blit(self.background_img, (tree['x'], tree['y']),
                             (tree['x']-self.iter, tree['y'],
                              self.tree_img.get_width(), self.tree_gap))
            if self.iter < self.background_img.get_width() - self.screen_width:
                self.screen.blit(self.background_img, (tree['x'], tree['y']),
                                 (tree['x']-(self.iter+self.background_img.get_width()), tree['y'],
                                  self.tree_img.get_width(), self.tree_gap))
                
            trunk_left  = tree['x'] + 215
            trunk_right = tree['x'] + 290
            trunk_top   = tree['y']
            trunk_bot   = tree['y'] + self.tree_gap

            # Compute collision.
            if (((trunk_left < (self.monkey_left+15)) and (trunk_right > (self.monkey_left+15))) or
                ((trunk_left < self.monkey_right) and (trunk_right > self.monkey_right))):
                #pg.draw.rect(self.screen, (255,0,0), (trunk_left, trunk_top, trunk_right-trunk_left, trunk_bot-trunk_top), 1)
                #pg.draw.rect(self.screen, (255,0,0), (self.monkey_left+15, monkey_top, self.monkey_img.get_width()-15, monkey_bot-monkey_top), 1)
                if (monkey_top < trunk_top) or (monkey_bot > trunk_bot):
                    tree_hit = True
            
            # Keep score.
            if not tree['s'] and (self.monkey_left+15) > trunk_right:
                tree['s'] = True
                self.score += 1
                pass_tree = True
                if self.sound:
                    self.blop_snd.play()

        # Monkey swings down on a vine.
        if self.vel < 0:
            pg.draw.line(self.screen, (92,64,51), (self.screen_width/2+20, self.monkey_loc-25), (self.hook,0), 4)

        # Render the monkey.
        self.screen.blit(self.monkey_img, (self.monkey_left, monkey_top))

        # Fail on hitting top or bottom.
        if monkey_bot > self.screen_height or monkey_top < 0:
            edge_hit = True

        # Render the score
        score_text = self.font.render("Score: %d" % (self.score), 1, (230, 40, 40))
	self.screen.blit(score_text, score_text.get_rect())

        if self.text is not None:
            text = self.font.render(self.text, 1, (230, 40, 40))
            textpos = text.get_rect()
            self.screen.blit(text, (self.screen_width-textpos[2],0,textpos[2],textpos[3]))

        # Render the display.
        pg.display.update()

        # If failed, play sound and exit.  Also, assign rewards.
        if edge_hit:
            if self.sound:
                ch = self.screech_snd.play()
                while ch.get_busy():
                    pg.time.delay(500)
            if self.reward_fn is not None:
                self.reward_fn(self.edge_penalty)
            if self.action_fn is not None:
                self.action_fn(self.get_state())
            return False
        if tree_hit:
            if self.sound:
                ch = self.screech_snd.play()
                while ch.get_busy():
                    pg.time.delay(500)
            if self.reward_fn is not None:
                self.reward_fn(self.tree_penalty)
            if self.action_fn is not None:
                self.action_fn(self.get_state())
            return False

        if self.reward_fn is not None:
            if pass_tree:
                self.reward_fn(self.tree_reward)
            else:
                self.reward_fn(0.0)            
        
        # Wait just a bit.
        pg.time.delay(self.tick_length)

        # Move things.
        self.hook -= self.horz_speed
        self.iter -= self.horz_speed
        if self.iter < -self.background_img.get_width():
            self.iter += self.background_img.get_width()

        return True
Пример #52
0
 def newcontent(self,n=0,t=-1):
   xpos,xposc = uniform(0.,1.,(2,self.M-n))
   self.xpos[n:] = xpos
   self.xspeed[n:] = (xposc-xpos)/self.N
   self.born[n:] = t+cumsum(geometric(self.rate,(self.M-n,)))
Пример #53
0
def generate_fragments(T, xs, m):
    '''
    Generate m random fragments from the transcripts T.

     The model of random fragmentation used here is very simple: we simple
     choose two random break-points, as follows,

     1. Choose a transcript t randomly, with probability proportional to its
        relative abundance times its length.

     2. Choose a start breakpoint uniformly from within the mature mRNA.

     3. Choose an end breakpoint by drawing a geometric variate and adding it
        to the start breakpoint. If this ends up outside the mRNA, reject, and
        try again from step 1.

    '''


    stderr.write('generating fragments ...\n')

    ws = np.array([t.exonic_length() for t in T]) * xs
    ws /= sum(ws)
    np.cumsum(ws, out = ws)

    fs = np.empty((m, 3), dtype = int)

    i = 0
    while i < m:
        # choose a random transcript
        j = ws.searchsorted(random())
        l = T[j].exonic_length()

        # choose start and end points
        start = random_integers(0, l - 1)
        end   = start + geometric(args.frag_pr)

        # reject improper fragments (end breakpoint outside the mRNA)
        if end >= l: continue

        # reject fragments lost in size selection
        fraglen = end - start + 1
        if fraglen < args.size_low + normal(args.size_noise):
            continue

        if fraglen > args.size_high + normal(args.size_noise):
            continue

        # reject fragments too short to sequence
        if fraglen < args.readlen:
            continue


        fs[i] = (j, start, end)
        i += 1

        if (i % 100000) == 0:
            stderr.write('\t{0}\n'.format(i))

    stderr.write('done. ({0} fragments)\n'.format(m))

    return fs
Пример #54
0
 def test_geometric(self):
     pymc3_random_discrete(Geometric, {'p':Unit},
                           size=500,# Test always fails with larger sample sizes.
                           fails=50,# Be a bit more generous.
                           ref_rand=lambda size, p=None: nr.geometric(p, size=size))
Пример #55
0
                count += 1;
                
        print("-"*50)
        print("Score table:")
        print(result)

        print("\nRanking:")

        total = np.zeros(strlen, dtype=int)
        for i in range(strlen):
            total[i] = np.sum(result[i])
        
        ranking = np.argsort(total)[::-1]
        for i in range(strlen):
            s = ranking[i]
            print("{0}. \"{1}\"".format(i+1, self.strategies[s].__name__))
            print("total points: {0}, average points per game: {1}, average points per stage: {2}"
                .format( total[s], total[s]/(strlen-1), total[s]/((strlen-1)*self.ts_length) ))


if __name__ == '__main__':
    payoff = np.array([[2, 0], [3, 1]])
    discount_v = 0.9999
    playtimes = geometric(1 - discount_v)

    strategies = [grim_trigger, random_strategy, allC, allD, alternate, two_one, tit_for_tat, probability]
    game = RepeatedMatrixGame(payoff, strategies, playtimes)
    game.play()


Пример #56
0
 def randArity(self, minArity = 0, p = 0.4):
     return minArity + nrandom.geometric(p) - 1
Пример #57
0
def chip_spec_deprecated(G,config,mean_frag_length):
    lamb = 1.0/mean_frag_length
    raw_frags = [(max(0,i-nprand.geometric(lamb)),min(G,i+nprand.geometric(lamb))) for i in config]
Пример #58
0
    keyfunc = kwds.get('key', lambda a: a)
    fill_val = kwds.get('fill_value', 0.0)
    args = [a.copy() for a in args]
    argsort = sorted(enumerate(args[0]), key=compose(keyfunc,itemgetter(1)))
    indexsort = [index for index, item in argsort]
    args = [a.take(indexsort) for a in args]
    # calculate groups
    g_mask = keyfunc(args[0])
    g_set = unique1d(g_mask)
    g_max = max([g_mask[g_mask==g].shape[0] for g in g_set])
    g_args = [fill_val * ones((len(g_set), g_max), dtype=a.dtype) for a in args]
    for gix, gval in enumerate(g_set):
        for ga, a in izip(g_args, args):
            b = a[g_mask==gval]
            ga[gix,:len(b)] = b
    return tuple(g_args)


if __name__ == "__main__":
    from numpy import arange, set_printoptions, random
    set_printoptions(precision=2, suppress=True, linewidth=60);
    b = arange(100, 200)
    c = agroupby(b, key=lambda x: x%10)
    print c
    
    a = random.geometric(0.01, 20)
    b = a + 20
    c, d = agroupby(a, b, key=lambda x: x%10)
    print c
    print d
Пример #59
0
def generate_geometric_distribution(S,pr=None):
    if not pr:
        pr = random()
    return ([geometric(pr) for _ in xrange(S)])
Пример #60
0
 def _rvs(self, p):
     return mtrand.geometric(p, size=self._size)