def imf_inv_prim_log_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) mu = inv_error(0.346516861952484 * x / sigma_logm) val = 10.0 ** (1.4142135623731 * sigma_logm * mu + mean_logm) if returnFloat: return val[0] else: return val
def imf_mlog_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) z = np.log10(m) - mean_logm val = np.exp(-z ** 2 / (2.0 * sigma_logm ** 2)) if returnFloat: return val[0] else: return val
def imf_prim_log_normal(m, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) mu = (np.log10(m) - mean_logm) / (1.4142135623731 * sigma_logm) val = 2.88586244942136 * sigma_logm * error(mu) if returnFloat: return val[0] else: return val
def mlog_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and \ (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) z = np.log10(m) - mean_logm val = np.exp(-z**2 / (2.0 * sigma_logm**2)) if returnFloat: return val[0] else: return val
def inv_prim_log_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and \ (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) mu = inv_error(0.346516861952484 * x / sigma_logm) val = 10.0**(1.4142135623731 * sigma_logm * mu + mean_logm) if returnFloat: return val[0] else: return val
def prim_log_normal(m, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and \ (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) mu = (np.log10(m) - mean_logm) / (1.4142135623731 * sigma_logm) val = 2.88586244942136 * sigma_logm * error(mu) if returnFloat: return val[0] else: return val
def imf_prim_mlog_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) eta = np.log10(m) - mean_logm - (sigma_logm ** 2 * 2.30258509299405) eta /= 1.4142135623731 * sigma_logm t1 = (1.15129254649702 * sigma_logm ** 2) + mean_logm val = error(eta) val *= 2.88586244942136 * sigma_logm * np.exp(2.30258509299405 * t1) if returnFloat: return val[0] else: return val
def prim_mlog_normal(x, mean_logm, sigma_logm): returnFloat = (type(m) == float) and (type(mean_logm) == float) and \ (type(sigma_logm) == float) m = np.atleast_1d(m) mean_logm = np.atleat_1d(mean_logm) sigma_logm = np.atleat_1d(sigma_logm) eta = np.log10(m) - mean_logm - (sigma_logm**2 * 2.30258509299405) eta /= 1.4142135623731 * sigma_logm t1 = (1.15129254649702 * sigma_logm**2) + mean_logm val = error(eta) val *= 2.88586244942136 * sigma_logm * np.exp(2.30258509299405 * t1) if returnFloat: return val[0] else: return val