Пример #1
0
 def declare(self, name, dtype, shape, unlim=None, addr=-1):
     current = self.items.get(name)
     if dtype == dict:
         if current is not None:
             if current.isgroup():
                 return current
             raise KeyError("already a non-group item {}".format(name))
         item = PDBGroup(self)
     elif dtype == list:
         if current is not None:
             if current.islist() == 2:
                 return current
             raise KeyError("already a non-list item {}".format(name))
         item = QnDList(PDBGroup(self), 1)
     else:
         if current is not None:
             raise KeyError("attempt to redeclare {}".format(name))
         if dtype is None and name == '_':
             # Assume we are creating a QList.
             dtype = npdtype('u1')
         elif isinstance(dtype, npdtype) and dtype.kind == 'S':
             # frontend never passes 'U' dtype
             shape = shape + (dtype.itemsize,)
             dtype = npdtype('S1')
         item = PDBLeaf(self, addr, dtype, shape, unlim)
         if unlim:
             item = QnDList(item, None if hasattr(addr, '__iter__') or
                            addr != -1 else 1)
     self.items[name] = item
     return item
Пример #2
0
    def make_nd_array(c_pointer,
                      shape,
                      dtype=float64,
                      order='C',
                      own_data=True):
        """
       replacement for: np.ctypeslib.as_array(x)
       that doesn't work with python3
       http://stackoverflow.com/questions/4355524/getting-data-from-ctypes-array-into-numpy
       """
        from numpy import prod, float64, ndarray
        from numpy import dtype as npdtype

        arr_size = prod(shape[:]) * npdtype(dtype).itemsize
        if sys.version_info.major >= 3:
            buf_from_mem = ctypes.pythonapi.PyMemoryView_FromMemory
            buf_from_mem.restype = ctypes.py_object
            buf_from_mem.argtypes = (ctypes.c_void_p, ctypes.c_int,
                                     ctypes.c_int)
            buffer = buf_from_mem(c_pointer, arr_size, 0x100)
        else:
            buf_from_mem = ctypes.pythonapi.PyBuffer_FromMemory
            buf_from_mem.restype = ctypes.py_object
            buffer = buf_from_mem(c_pointer, arr_size)
        arr = ndarray(tuple(shape[:]), dtype, buffer, order=order)
        if own_data and not arr.flags.owndata:
            return arr.copy()
        else:
            return arr
Пример #3
0
def __decode_array(fp_read, no_bytes, object_hook, object_pairs_hook, intern_object_keys, islittle):
    marker, counting, count, type_, dims = __get_container_params(fp_read, False, no_bytes, object_hook, object_pairs_hook, intern_object_keys, islittle)

    # special case - no data (None or bool)
    if type_ in __TYPES_NO_DATA:
        return [__METHOD_MAP[type_](fp_read, type_, islittle)] * count

    # special case - bytes array
    if type_ == TYPE_UINT8 and not no_bytes and len(dims)==0:
        container = fp_read(count)
        if len(container) < count:
            raise DecoderException('Container bytes array too short')
        return container

    container = []
    while count > 0 and (counting or marker != ARRAY_END):
        if marker == TYPE_NOOP:
            marker = fp_read(1)
            continue

        # decode value
        try:
            value = __METHOD_MAP[marker](fp_read, marker, islittle)
        except KeyError:
            handled = False
        else:
            handled = True

        # handle outside above except (on KeyError) so do not have unfriendly "exception within except" backtrace
        if not handled:
            if marker == ARRAY_START:
                value = __decode_array(fp_read, no_bytes, object_hook, object_pairs_hook, intern_object_keys, islittle)
            elif marker == OBJECT_START:
                value = __decode_object(fp_read, no_bytes, object_hook, object_pairs_hook, intern_object_keys, islittle)
            else:
                raise DecoderException('Invalid marker within array')

        container.append(value)
        if counting:
            count -= 1
        if count and type_ == TYPE_NONE:
            marker = fp_read(1)

    if len(dims)>0:
        container=list(reduce(lambda x, y: map(list, zip(*y*(x,))), (iter(container), ) +tuple(dims[:0:-1])))
        container=ndarray(container, dtype=npdtype(__DTYPE_MAP[type_]))

    return container
Пример #4
0
 def declare(self, name, dtype, shape, unlim=None):
     h5item = self.h5item
     if dtype == dict:
         return H5Group(h5item.create_group(name))
     if dtype == list:
         return QnDList(H5Group(h5item.create_group(name)), 1)
     if dtype is None or (shape and not all(shape)):
         h5item[name] = npdtype('u1') if dtype is None else dtype
         item = h5item[name]
         if dtype is None:
             item.attrs['__none__'] = True
         else:
             item.attrs['__shape__'] = shape
     elif unlim:
         item = h5item.create_dataset(name, (1,)+shape, dtype=dtype,
                                      maxshape=(None,)+shape)
     else:
         item = h5item.create_dataset(name, shape, dtype=dtype)
     item = H5Leaf(item, h5item)
     return QnDList(item, 1) if unlim else item
Пример #5
0
 def make_nd_array(c_pointer, shape, dtype=float64, order='C', own_data=True):
     """
     replacement for: np.ctypeslib.as_array(x)
     that doesn't work with python3
     http://stackoverflow.com/questions/4355524/getting-data-from-ctypes-array-into-numpy
     """
     from numpy import prod,float64,ndarray
     from numpy import dtype as npdtype
 
     arr_size = prod(shape[:]) * npdtype(dtype).itemsize 
     if sys.version_info.major >= 3:
         buf_from_mem = ctypes.pythonapi.PyMemoryView_FromMemory
         buf_from_mem.restype = ctypes.py_object
         buf_from_mem.argtypes = (ctypes.c_void_p, ctypes.c_int, ctypes.c_int)
         buffer = buf_from_mem(c_pointer, arr_size, 0x100)
     else:
         buf_from_mem = ctypes.pythonapi.PyBuffer_FromMemory
         buf_from_mem.restype = ctypes.py_object
         buffer = buf_from_mem(c_pointer, arr_size)
     arr = ndarray(tuple(shape[:]), dtype, buffer, order=order)
     if own_data and not arr.flags.owndata:
         return arr.copy()
     else:
         return arr
Пример #6
0
                        '0'))  # allows config info to be debugged
read_config([DEFAULT_CONFIG_FILE, USER_CONFIG_FILE, USER_ENV_CONFIG_FILE])

# verbosity level from environment has priority, otherwise use config, which
# defaults to 0.  Note that we looked at the env var previously to allow debug of config
VERBOSE = int(
    os.getenv('PYFUSION_VERBOSE',
              config.get('global', 'VERBOSE', vars={'VERBOSE': '0'})))
## Variable precision - allows data sets to be much bigger - up to 4x  bdb Dec-2012

root_dir = os.path.split(os.path.abspath(__file__))[0]

try:
    from numpy import dtype as npdtype
    # Beware!  vars takes  precedence over others!
    prec_med = npdtype(config.get(
        'global', 'precision_medium'))  #,vars={'precision_medium':'float32'}))
except:
    print('defaulting medium precision value, either because of error or'\
              ' missing value precision_medium in globals')
    from numpy import dtype as npdtype
    prec_med = npdtype('float32')

# warning - may need to move this earlier - for some reason the fftw3 import
# doesn't work if it is ahead of this one.
try:
    COLORS = config.get('global', 'colors')
except:
    if VERBOSE > 0: print('colors not in config file - no color!')
    COLORS = None

try:
Пример #7
0
NSAMPLES = int(os.getenv('PYFUSION_NSAMPLES',
                    config.get('global','NSAMPLES',vars={'NSAMPLES':'0'})))

root_dir = os.path.split(os.path.abspath( __file__ ))[0]

# cache control is likely to be computer dependent
try:
    TMP_FREE_BYTES = float(config.get('global','tmp_free_bytes'))
except:
    TMP_FREE_BYTES = 1e9
    print('defaulting [global]temp_free_bytes to {t:,}'.format(t=TMP_FREE_BYTES))

try:
    from numpy import dtype as npdtype
    # Beware!  vars takes  precedence over others!
    prec_med=npdtype(config.get('global','precision_medium')) #,vars={'precision_medium':'float32'}))
except:
    print('defaulting medium precision value, either because of error or'\
              ' missing value precision_medium in globals')
    from numpy import dtype as npdtype
    prec_med=npdtype('float32')

# warning - may need to move this earlier - for some reason the fftw3 import 
# doesn't work if it is ahead of this one.
try:
    COLORS=config.get('global','colors')
except:
    if VERBOSE>0: print('colors not in config file - no color!')
    COLORS=None

#