def __init__(self, c_or_r, r=False, variable=None): if isinstance(c_or_r, poly1d): self._variable = c_or_r._variable self._coeffs = c_or_r._coeffs if set(c_or_r.__dict__) - set(self.__dict__): msg = ("In the future extra properties will not be copied " "across when constructing one poly1d from another") warnings.warn(msg, FutureWarning, stacklevel=2) self.__dict__.update(c_or_r.__dict__) if variable is not None: self._variable = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if c_or_r.ndim > 1: raise ValueError("Polynomial must be 1d only.") c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self._coeffs = c_or_r if variable is None: variable = 'x' self._variable = variable
def __new__(subtype, data, dtype=None, copy=True): warnings.warn( 'the matrix subclass is not the recommended way to ' 'represent matrices or deal with linear algebra (see ' 'https://docs.scipy.org/doc/numpy/user/' 'numpy-for-matlab-users.html). ' 'Please adjust your code to use regular ndarray.', PendingDeprecationWarning, stacklevel=2) if isinstance(data, matrix): dtype2 = data.dtype if (dtype is None): dtype = dtype2 if (dtype2 == dtype) and (not copy): return data return data.astype(dtype) if isinstance(data, N.ndarray): if dtype is None: intype = data.dtype else: intype = N.dtype(dtype) new = data.view(subtype) if intype != data.dtype: return new.astype(intype) if copy: return new.copy() else: return new if isinstance(data, str): data = _convert_from_string(data) # now convert data to an array arr = N.array(data, dtype=dtype, copy=copy) ndim = arr.ndim shape = arr.shape if (ndim > 2): raise ValueError("matrix must be 2-dimensional") elif ndim == 0: shape = (1, 1) elif ndim == 1: shape = (1, shape[0]) order = 'C' if (ndim == 2) and arr.flags.fortran: order = 'F' if not (order or arr.flags.contiguous): arr = arr.copy() ret = N.ndarray.__new__(subtype, shape, arr.dtype, buffer=arr, order=order) return ret
def column_stack(tup): """ Stack 1-D arrays as columns into a 2-D array. Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with `hstack`. 1-D arrays are turned into 2-D columns first. Parameters ---------- tup : sequence of 1-D or 2-D arrays. Arrays to stack. All of them must have the same first dimension. Returns ------- stacked : 2-D array The array formed by stacking the given arrays. See Also -------- stack, hstack, vstack, concatenate Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.column_stack((a,b)) array([[1, 2], [2, 3], [3, 4]]) """ arrays = [] for v in tup: arr = array(v, copy=False, subok=True) if arr.ndim < 2: arr = array(arr, copy=False, subok=True, ndmin=2).T arrays.append(arr) return _nx.concatenate(arrays, 1)
def array_split(ary, indices_or_sections, axis=0): """ Split an array into multiple sub-arrays. Please refer to the ``split`` documentation. The only difference between these functions is that ``array_split`` allows `indices_or_sections` to be an integer that does *not* equally divide the axis. For an array of length l that should be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest of size l//n. See Also -------- split : Split array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(8.0) >>> np.array_split(x, 3) [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])] >>> x = np.arange(7.0) >>> np.array_split(x, 3) [array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])] """ try: Ntotal = ary.shape[axis] except AttributeError: Ntotal = len(ary) try: # handle scalar case. Nsections = len(indices_or_sections) + 1 div_points = [0] + list(indices_or_sections) + [Ntotal] except TypeError: # indices_or_sections is a scalar, not an array. Nsections = int(indices_or_sections) if Nsections <= 0: raise ValueError('number sections must be larger than 0.') Neach_section, extras = divmod(Ntotal, Nsections) section_sizes = ([0] + extras * [Neach_section + 1] + (Nsections - extras) * [Neach_section]) div_points = _nx.array(section_sizes).cumsum() sub_arys = [] sary = _nx.swapaxes(ary, axis, 0) for i in range(Nsections): st = div_points[i] end = div_points[i + 1] sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0)) return sub_arys
def kron(a, b): """ Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a, b : array_like Returns ------- out : ndarray See Also -------- outer : The outer product Notes ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> np.kron([1,10,100], [5,6,7]) array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) >>> np.kron([5,6,7], [1,10,100]) array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) >>> np.kron(np.eye(2), np.ones((2,2))) array([[ 1., 1., 0., 0.], [ 1., 1., 0., 0.], [ 0., 0., 1., 1.], [ 0., 0., 1., 1.]]) >>> a = np.arange(100).reshape((2,5,2,5)) >>> b = np.arange(24).reshape((2,3,4)) >>> c = np.kron(a,b) >>> c.shape (2, 10, 6, 20) >>> I = (1,3,0,2) >>> J = (0,2,1) >>> J1 = (0,) + J # extend to ndim=4 >>> S1 = (1,) + b.shape >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) >>> c[K] == a[I]*b[J] True """ b = asanyarray(b) a = array(a, copy=False, subok=True, ndmin=b.ndim) ndb, nda = b.ndim, a.ndim if (nda == 0 or ndb == 0): return _nx.multiply(a, b) as_ = a.shape bs = b.shape if not a.flags.contiguous: a = reshape(a, as_) if not b.flags.contiguous: b = reshape(b, bs) nd = ndb if (ndb != nda): if (ndb > nda): as_ = (1, ) * (ndb - nda) + as_ else: bs = (1, ) * (nda - ndb) + bs nd = nda result = outer(a, b).reshape(as_ + bs) axis = nd - 1 for _ in range(nd): result = concatenate(result, axis=axis) wrapper = get_array_prepare(a, b) if wrapper is not None: result = wrapper(result) wrapper = get_array_wrap(a, b) if wrapper is not None: result = wrapper(result) return result
def apply_over_axes(func, a, axes): """ Apply a function repeatedly over multiple axes. `func` is called as `res = func(a, axis)`, where `axis` is the first element of `axes`. The result `res` of the function call must have either the same dimensions as `a` or one less dimension. If `res` has one less dimension than `a`, a dimension is inserted before `axis`. The call to `func` is then repeated for each axis in `axes`, with `res` as the first argument. Parameters ---------- func : function This function must take two arguments, `func(a, axis)`. a : array_like Input array. axes : array_like Axes over which `func` is applied; the elements must be integers. Returns ------- apply_over_axis : ndarray The output array. The number of dimensions is the same as `a`, but the shape can be different. This depends on whether `func` changes the shape of its output with respect to its input. See Also -------- apply_along_axis : Apply a function to 1-D slices of an array along the given axis. Notes ------ This function is equivalent to tuple axis arguments to reorderable ufuncs with keepdims=True. Tuple axis arguments to ufuncs have been available since version 1.7.0. Examples -------- >>> a = np.arange(24).reshape(2,3,4) >>> a array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) Sum over axes 0 and 2. The result has same number of dimensions as the original array: >>> np.apply_over_axes(np.sum, a, [0,2]) array([[[ 60], [ 92], [124]]]) Tuple axis arguments to ufuncs are equivalent: >>> np.sum(a, axis=(0,2), keepdims=True) array([[[ 60], [ 92], [124]]]) """ val = asarray(a) N = a.ndim if array(axes).ndim == 0: axes = (axes, ) for axis in axes: if axis < 0: axis = N + axis args = (val, axis) res = func(*args) if res.ndim == val.ndim: val = res else: res = expand_dims(res, axis) if res.ndim == val.ndim: val = res else: raise ValueError("function is not returning " "an array of the correct shape") return val
def tile(A, reps): """ Construct an array by repeating A the number of times given by reps. If `reps` has length ``d``, the result will have dimension of ``max(d, A.ndim)``. If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote `A` to d-dimensions manually before calling this function. If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as (1, 1, 2, 2). Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy1's broadcasting operations and functions. Parameters ---------- A : array_like The input array. reps : array_like The number of repetitions of `A` along each axis. Returns ------- c : ndarray The tiled output array. See Also -------- repeat : Repeat elements of an array. broadcast_to : Broadcast an array to a new shape Examples -------- >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0, 1, 2, 0, 1, 2]) >>> np.tile(a, (2, 2)) array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) >>> np.tile(a, (2, 1, 2)) array([[[0, 1, 2, 0, 1, 2]], [[0, 1, 2, 0, 1, 2]]]) >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> np.tile(b, (2, 1)) array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> c = np.array([1,2,3,4]) >>> np.tile(c,(4,1)) array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) """ try: tup = tuple(reps) except TypeError: tup = (reps, ) d = len(tup) if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray): # Fixes the problem that the function does not make a copy if A is a # numpy1 array and the repetitions are 1 in all dimensions return _nx.array(A, copy=True, subok=True, ndmin=d) else: # Note that no copy of zero-sized arrays is made. However since they # have no data there is no risk of an inadvertent overwrite. c = _nx.array(A, copy=False, subok=True, ndmin=d) if (d < c.ndim): tup = (1, ) * (c.ndim - d) + tup shape_out = tuple(s * t for s, t in zip(c.shape, tup)) n = c.size if n > 0: for dim_in, nrep in zip(c.shape, tup): if nrep != 1: c = c.reshape(-1, n).repeat(nrep, 0) n //= dim_in return c.reshape(shape_out)
def __getitem__(self, key): # handle matrix builder syntax if isinstance(key, str): frame = sys._getframe().f_back mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals) return mymat if not isinstance(key, tuple): key = (key, ) # copy attributes, since they can be overridden in the first argument trans1d = self.trans1d ndmin = self.ndmin matrix = self.matrix axis = self.axis objs = [] scalars = [] arraytypes = [] scalartypes = [] for k, item in enumerate(key): scalar = False if isinstance(item, slice): step = item.step start = item.start stop = item.stop if start is None: start = 0 if step is None: step = 1 if isinstance(step, complex): size = int(abs(step)) newobj = function_base.linspace(start, stop, num=size) else: newobj = _nx.arange(start, stop, step) if ndmin > 1: newobj = array(newobj, copy=False, ndmin=ndmin) if trans1d != -1: newobj = newobj.swapaxes(-1, trans1d) elif isinstance(item, str): if k != 0: raise ValueError("special directives must be the " "first entry.") if item in ('r', 'c'): matrix = True col = (item == 'c') continue if ',' in item: vec = item.split(',') try: axis, ndmin = [int(x) for x in vec[:2]] if len(vec) == 3: trans1d = int(vec[2]) continue except Exception: raise ValueError("unknown special directive") try: axis = int(item) continue except (ValueError, TypeError): raise ValueError("unknown special directive") elif type(item) in ScalarType: newobj = array(item, ndmin=ndmin) scalars.append(len(objs)) scalar = True scalartypes.append(newobj.dtype) else: item_ndim = ndim(item) newobj = array(item, copy=False, subok=True, ndmin=ndmin) if trans1d != -1 and item_ndim < ndmin: k2 = ndmin - item_ndim k1 = trans1d if k1 < 0: k1 += k2 + 1 defaxes = list(range(ndmin)) axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2] newobj = newobj.transpose(axes) objs.append(newobj) if not scalar and isinstance(newobj, _nx.ndarray): arraytypes.append(newobj.dtype) # Ensure that scalars won't up-cast unless warranted final_dtype = find_common_type(arraytypes, scalartypes) if final_dtype is not None: for k in scalars: objs[k] = objs[k].astype(final_dtype) res = self.concatenate(tuple(objs), axis=axis) if matrix: oldndim = res.ndim res = self.makemat(res) if oldndim == 1 and col: res = res.T return res
def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by:: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the roots of the polynomial. Raises ------ ValueError When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Compute polynomial values. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if p.ndim != 1: raise ValueError("Input must be a rank-1 array.") # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1]) + 1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N - 2, ), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots
def nan_to_num(x, copy=True): """ Replace NaN with zero and infinity with large finite numbers. If `x` is inexact, NaN is replaced by zero, and infinity and -infinity replaced by the respectively largest and most negative finite floating point values representable by ``x.dtype``. For complex dtypes, the above is applied to each of the real and imaginary components of `x` separately. If `x` is not inexact, then no replacements are made. Parameters ---------- x : scalar or array_like Input data. copy : bool, optional Whether to create a copy of `x` (True) or to replace values in-place (False). The in-place operation only occurs if casting to an array does not require a copy. Default is True. .. versionadded:: 1.13 Returns ------- out : ndarray `x`, with the non-finite values replaced. If `copy` is False, this may be `x` itself. See Also -------- isinf : Shows which elements are positive or negative infinity. isneginf : Shows which elements are negative infinity. isposinf : Shows which elements are positive infinity. isnan : Shows which elements are Not a Number (NaN). isfinite : Shows which elements are finite (not NaN, not infinity) Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.nan_to_num(np.inf) 1.7976931348623157e+308 >>> np.nan_to_num(-np.inf) -1.7976931348623157e+308 >>> np.nan_to_num(np.nan) 0.0 >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) >>> np.nan_to_num(x) array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, -1.28000000e+002, 1.28000000e+002]) >>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) >>> np.nan_to_num(y) array([ 1.79769313e+308 +0.00000000e+000j, 0.00000000e+000 +0.00000000e+000j, 0.00000000e+000 +1.79769313e+308j]) """ x = _nx.array(x, subok=True, copy=copy) xtype = x.dtype.type isscalar = (x.ndim == 0) if not issubclass(xtype, _nx.inexact): return x[()] if isscalar else x iscomplex = issubclass(xtype, _nx.complexfloating) dest = (x.real, x.imag) if iscomplex else (x, ) maxf, minf = _getmaxmin(x.real.dtype) for d in dest: _nx.copyto(d, 0.0, where=isnan(d)) _nx.copyto(d, maxf, where=isposinf(d)) _nx.copyto(d, minf, where=isneginf(d)) return x[()] if isscalar else x