Пример #1
0
def test_read_csv():
    import nums
    from nums.core import settings
    settings.system_name = "serial"

    filename = settings.pj(settings.project_root, "tests", "core", "storage", "test.csv")
    ba = nums.read_csv(filename, has_header=True)
    assert np.allclose(ba[0].get(), [123, 4, 5])
    assert np.allclose(ba[-1].get(), [1.2, 3.4, 5.6])
Пример #2
0
def test_modin(nps_app_inst):
    import nums
    import nums.numpy as nps
    import modin.pandas as mpd
    from nums.core import settings
    from nums.core.systems.systems import RaySystem

    if not isinstance(nps_app_inst.cm.system, RaySystem):
        return

    filename = settings.pj(settings.project_root, "tests", "core", "storage",
                           "test.csv")
    ba1 = nums.read_csv(filename, has_header=True)
    df = mpd.read_csv(filename)
    ba2: BlockArray = nums.from_modin(df)
    assert nps.allclose(ba1, ba2)
Пример #3
0
                dtype=nps.int.__name__,
            ),
            cm,
        )
        for grid_entry in X.grid.get_entry_iterator():
            i = grid_entry[0]
            X_block: Block = X.blocks[grid_entry]
            r_block: Block = result.blocks[i]
            syskwargs = {
                "grid_entry": grid_entry,
                "grid_shape": X.grid.grid_shape
            }
            r_block.oid = cm.call("xgb_predict",
                                  model_block.oid,
                                  X_block.oid,
                                  syskwargs=syskwargs)
        return result


if __name__ == "__main__":
    from nums.core import settings
    import nums

    filename = settings.pj(settings.project_root, "tests", "core", "storage",
                           "test.csv")
    X: BlockArray = nums.read_csv(filename, has_header=True)
    y: BlockArray = nps.random.random_sample(X.shape[0])
    model = XGBClassifier()
    model.fit(X, y)
    print(model.predict(X).get())