Пример #1
0
class RDSEEncoder():
    def __init__(self, resolution=.5):
        """Create the encoder instance for our test and return it."""
        self.resolution = resolution
        self.series_encoder = RandomDistributedScalarEncoder(
            self.resolution, name="RDSE-(res={})".format(self.resolution))
        self.encoder = MultiEncoder()
        self.encoder.addEncoder("series", self.series_encoder)
        self.last_m_encode = np.zeros(1)

    def get_encoder(self):
        return self.encoder

    def get_resolution(self):
        return self.resolution

    def m_encode(self, inputData):
        self.last_m_encode = self.encoder.encode(inputData)
        return self.last_m_encode

    def m_overlap(self, inputData):
        temp = self.last_m_encode
        self.last_m_encode = self.encoder.encode(inputData)
        return numpy.sum(numpy.multiply(self.last_m_encode, temp))

    def r_encode(self, inputData):
        return self.series_encoder.encode(inputData)

    def r_overlap(self, inputA, inputB):
        return numpy.sum(
            numpy.multiply(self.series_encoder.encode(inputA),
                           self.series_encoder.encode(inputB)))
Пример #2
0
class Entity():
    def __init__(self, columnCount, InputEncoderParams, toL4ConnectorParamsI,
                 toL4ConnectorParamsII, toL5ConnectorParams,
                 toD1ConnectorParams, toD2ConnectorParams, L4Params, L5Params,
                 k, D1Params, D2Params):
        self.columnCount = columnCount
        self.toL4ConnectorParamsI = toL4ConnectorParamsI
        self.toL4ConnectorParamsII = toL4ConnectorParamsII
        self.toL5ConnectorParams = toL5ConnectorParams
        self.toD1ConnectorParams = toD1ConnectorParams
        self.toD2ConnectorParams = toD2ConnectorParams
        self.L4Params = L4Params
        self.L5Params = L5Params
        self.k = k
        self.D1Params = D1Params
        self.D2Params = D2Params
        self.learning = False

        #encoder
        from nupic.encoders import MultiEncoder
        self.InputEncoder = MultiEncoder()
        self.InputEncoder.addMultipleEncoders(InputEncoderParams)
        print "Encoder Online"

        #spatialPoolers
        from nupic.algorithms.spatial_pooler import SpatialPooler
        self.toL4ConnectorI = SpatialPooler(
            inputDimensions=(toL4ConnectorParamsI["inputDimensions"], ),
            columnDimensions=(columnCount, ),
            potentialPct=toL4ConnectorParamsI["potentialPct"],
            globalInhibition=toL4ConnectorParamsI["globalInhibition"],
            localAreaDensity=toL4ConnectorParamsI["localAreaDensity"],
            numActiveColumnsPerInhArea=toL4ConnectorParamsI[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL4ConnectorParamsI["synPermInactiveDec"],
            synPermActiveInc=toL4ConnectorParamsI["synPermActiveInc"],
            synPermConnected=toL4ConnectorParamsI["synPermConnected"],
            boostStrength=toL4ConnectorParamsI["boostStrength"],
            seed=toL4ConnectorParamsI["seed"],
            wrapAround=toL4ConnectorParamsI["wrapAround"])  #this part sucks
        self.toL4ConnectorII = SpatialPooler(
            inputDimensions=(columnCount * 3, ),
            columnDimensions=(columnCount, ),
            potentialPct=toL4ConnectorParamsII["potentialPct"],
            globalInhibition=toL4ConnectorParamsII["globalInhibition"],
            localAreaDensity=toL4ConnectorParamsII["localAreaDensity"],
            numActiveColumnsPerInhArea=toL4ConnectorParamsII[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL4ConnectorParamsII["synPermInactiveDec"],
            synPermActiveInc=toL4ConnectorParamsII["synPermActiveInc"],
            synPermConnected=toL4ConnectorParamsII["synPermConnected"],
            boostStrength=toL4ConnectorParamsII["boostStrength"],
            seed=toL4ConnectorParamsII["seed"],
            wrapAround=toL4ConnectorParamsII["wrapAround"])
        print "toL4Connector Online"
        self.toL5Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toL5ConnectorParams["potentialPct"],
            globalInhibition=toL5ConnectorParams["globalInhibition"],
            localAreaDensity=toL5ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toL5ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toL5ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toL5ConnectorParams["synPermActiveInc"],
            synPermConnected=toL5ConnectorParams["synPermConnected"],
            boostStrength=toL5ConnectorParams["boostStrength"],
            seed=toL5ConnectorParams["seed"],
            wrapAround=toL5ConnectorParams["wrapAround"])
        print "toL5Connector Online"
        self.toD1Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toD1ConnectorParams["potentialPct"],
            globalInhibition=toD1ConnectorParams["globalInhibition"],
            localAreaDensity=toD1ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toD1ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toD1ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toD1ConnectorParams["synPermActiveInc"],
            synPermConnected=toD1ConnectorParams["synPermConnected"],
            boostStrength=toD1ConnectorParams["boostStrength"],
            seed=toD1ConnectorParams["seed"],
            wrapAround=toD1ConnectorParams["wrapAround"])
        print "toD1Connector Online"
        self.toD2Connector = SpatialPooler(
            inputDimensions=(columnCount, ),
            columnDimensions=(columnCount, ),
            potentialPct=toD2ConnectorParams["potentialPct"],
            globalInhibition=toD2ConnectorParams["globalInhibition"],
            localAreaDensity=toD2ConnectorParams["localAreaDensity"],
            numActiveColumnsPerInhArea=toD2ConnectorParams[
                "numActiveColumnsPerInhArea"],
            synPermInactiveDec=toD2ConnectorParams["synPermInactiveDec"],
            synPermActiveInc=toD2ConnectorParams["synPermActiveInc"],
            synPermConnected=toD2ConnectorParams["synPermConnected"],
            boostStrength=toD2ConnectorParams["boostStrength"],
            seed=toD2ConnectorParams["seed"],
            wrapAround=toD2ConnectorParams["wrapAround"])
        print "toD2Connector Online"

        #HTM Layers
        from nupic.algorithms.temporal_memory import TemporalMemory
        self.L4ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.L4 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
        )
        print "L4 Online"
        self.L5ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.L5 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
        )
        print "L5 Online"
        self.D1ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.D1 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
            initialPermanence=0.21,
            connectedPermanence=0.5,
        )
        print "D1 Online"
        self.D2ActiveColumns = numpy.zeros(self.columnCount, dtype=int)
        self.D2 = TemporalMemory(
            columnDimensions=(columnCount, ),
            seed=42,
            initialPermanence=0.21,
            connectedPermanence=0.5,
        )
        print "D2 Online"

    def encode_input(sine1, sine2, angularSpeed1, angularSpeed2,
                     efferenceCopy):
        return self.InputEncoder.encode({
            "sine1": sine1,
            "sine2": sine2,
            "angularSpeed1": angularSpeed1,
            "angularSpeed2": angularSpeed2,
            "efferenceCopy": efferenceCopy
        })

    def reset(self):
        self.action = 0
        self.L4.reset()
        self.L5.reset()
        self.D1.reset()
        self.D2.reset()

    def mimic(self, observation, action):
        #mimicking only requires remembering the given obs-act pattern,thus the striatum is neglected in this func
        self.learning = True
        self.action = action
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        #no action generation is needed in this func

    def learn(self, env, observation, expectedReaction):
        #We humans learn by trial and error,so does an AI agent.For neural networks,they have BP,but HTM does not
        #have a clear way to reinforcement learn(Where to feed in rewards?).Here I try to do something new.
        self.learning = False  #...trial
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(self.action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        L4Temp = numpy.zeros(
            self.columnCount * 3, dtype=int
        )  #ready to receive D1's disinhibition and D2's inhibition
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]
        for column in L4activeColumnIndices:
            L4Temp[int(column) * 3] = 1
        D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0]
        for column in D1ActiveColumnsIndices:
            L4Temp[int(column) * 3 + 1] = 1
        D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0]
        for i in range(self.columnCount - 1):
            L4Temp[i * 3 + 2] = 1
        for column in D2ActiveColumnsIndices:  #achieve inhibition in this way
            L4Temp[i * 3 + 2] = 0
        self.toL4ConnectorII.compute(L4Temp, self.learning,
                                     self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        #Action Generation
        p = 84  #there are 84 bits in the SDR representing the action fed in the agent,this is the "Efference Copy"
        count0 = 0
        count1 = 0
        count2 = 0
        for activeIndice in L5activeColumnIndices:
            convertedIndice = (activeIndice + 1) * 1126 / columnCount
            if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2:
                count2 = count2 + 1
            if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4:
                count1 = count1 + 1
            if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p:
                count0 = count0 + 1

        if count2 == max(count0, count1, count2):
            self.action = 2
        if count1 == max(count0, count1, count2):
            self.action = 1
        if count0 == max(count0, count1, count2):
            self.action = 0

        #...and error
        if self.action == expectedReaction:
            reward = 0.1
        else:
            reward = -0.1

        self.D1.setConnectedPermanence(self.D1.getConnectedPermanence() *
                                       (self.k**(-reward)))  #reward
        self.D2.setConnectedPermanence(self.D2.getConnectedPermanence() *
                                       (self.k**reward))  #punishment

        #Learn to correct mistakes(remember what's right and whats' wrong)
        self.learning = True
        DTemp = numpy.zeros(self.columnCount, dtype=int)
        for column in L5activeColumnIndices:
            DTemp[column] = 1
        self.toD1Connector.compute(DTemp, self.learning, self.D1ActiveColumns)
        self.toD2Connector.compute(DTemp, self.learning, self.D2ActiveColumns)
        self.D1.compute(self.D1ActiveColumns, learn=self.learning)
        self.D2.compute(self.D2ActiveColumns, learn=self.learning)

        return reward

    def react(self, observation):
        self.learning = False
        encodedInput = self.encode_input(observation[0], observation[2],
                                         observation[4], observation[5],
                                         str(self.action))

        self.toL4ConnectorI.compute(encodedInput, self.learning,
                                    self.L4ActiveColumns)
        L4Temp = numpy.zeros(self.columnCount * 3, dtype=int)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]
        for column in L4activeColumnIndices:
            L4Temp[int(column) * 3] = 1
        D1ActiveColumnsIndices = numpy.nonzero(self.D1ActiveColumns)[0]
        for column in D1ActiveColumnsIndices:
            L4Temp[int(column) * 3 + 1] = 1
        D2ActiveColumnsIndices = numpy.nonzero(self.D2ActiveColumns)[0]
        for i in range(self.columnCount - 1):
            L4Temp[i * 3 + 2] = 1
        for column in D2ActiveColumnsIndices:
            L4Temp[i * 3 + 2] = 0
        self.toL4ConnectorII.compute(L4Temp, self.learning,
                                     self.L4ActiveColumns)
        self.L4.compute(self.L4ActiveColumns, learn=self.learning)
        L4activeColumnIndices = numpy.nonzero(self.L4ActiveColumns)[0]

        L5Temp = numpy.zeros(self.columnCount, dtype=int)
        for column in L4activeColumnIndices:
            L5Temp[column] = 1
        self.toL5Connector.compute(L5Temp, self.learning, self.L5ActiveColumns)
        self.L5.compute(self.L5ActiveColumns, learn=self.learning)
        L5activeColumnIndices = numpy.nonzero(self.L5ActiveColumns)[0]

        p = 84
        count0 = 0
        count1 = 0
        count2 = 0
        for activeIndice in L5activeColumnIndices:
            convertedIndice = (activeIndice + 1) * 1126 / columnCount
            if convertedIndice <= 1126 - p / 4 and convertedIndice > 1126 - p / 2:
                count2 = count2 + 1
            if convertedIndice <= 1126 - p / 2 and convertedIndice > 1126 - 3 * p / 4:
                count1 = count1 + 1
            if convertedIndice <= 1126 - 3 * p / 4 and convertedIndice > 1126 - p:
                count0 = count0 + 1

        if count2 == max(count0, count1, count2):
            self.action = 2
        if count1 == max(count0, count1, count2):
            self.action = 1
        if count0 == max(count0, count1, count2):
            self.action = 0

        return self.action