Пример #1
0
    def test_Ex8_position_A_and_azimuth_and_distance_to_B():

        # Position A is given as n_EA_E:
        # Enter elements as lat/long in deg:
        lat, lon = rad(80), rad(-90)

        n_EA_E = lat_lon2n_E(lat, lon)

        # The initial azimuth and great circle distance (s_AB), and Earth
        # radius (r_Earth) are also given:
        azimuth = rad(200)
        s_AB = 1000  # m
        r_Earth = 6371e3  # m, mean Earth radius

        # Find the destination point B, as n_EB_E ("The direct/first geodetic
        # problem" for a sphere)

        # SOLUTION:
        # Step1: Convert distance in meter into distance in [rad]:
        distance_rad = s_AB / r_Earth
        # Step2: Find n_EB_E:
        n_EB_E = n_EA_E_distance_and_azimuth2n_EB_E(n_EA_E, distance_rad,
                                                    azimuth)

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EB, long_EB = n_E2lat_lon(n_EB_E)
        print('Ex8, Destination: lat, long = {0} {1} deg'.format(deg(lat_EB),
                                                               deg(long_EB)))

        assert_array_almost_equal(deg(lat_EB), 79.99154867)
        assert_array_almost_equal(deg(long_EB), -90.01769837)
        azimuth1 = n_EA_E_and_n_EB_E2azimuth(n_EA_E, n_EB_E, a=r_Earth, f=0)
        assert_array_almost_equal(azimuth, azimuth1+2*np.pi)
Пример #2
0
def plot_mean_position():
    positions = np.array([(90, 0),
                          (60, 10),
                          (50, -20),
                          ])
    lats, lons = positions.T
    nvecs = lat_lon2n_E(rad(lats), rad(lons))

    # Find the horizontal mean position:
    n_EM_E = unit(np.sum(nvecs, axis=1).reshape((3, 1)))
    lat, lon = n_E2lat_lon(n_EM_E)
    lat, lon = deg(lat), deg(lon)
    print('Ex7, Average lat={0}, lon={1}'.format(lat, lon))

    map1 = Basemap(projection='ortho', lat_0=int(lat), lon_0=int(lon),
                   resolution='l')
    plot_world(map1)
    x, y = map1(lon, lat)
    map1.scatter(x, y, linewidth=5, marker='o', color='r')

    x1, y1 = map1(lons, lats)
    print(len(lons), x1, y1)
    map1.scatter(x1, y1, linewidth=5, marker='o', color='k')

    plt.title('Figure of mean position (red dot) compared to positions '
              'A, B, and C (black dots).')
Пример #3
0
    def test_Ex6_interpolated_position():

        # Position B at time t0 and t2 is given as n_EB_E_t0 and n_EB_E_t1:
        # Enter elements as lat/long in deg:
        n_EB_E_t0 = lat_lon2n_E(rad(89), rad(0))
        n_EB_E_t1 = lat_lon2n_E(rad(89), rad(180))

        # The times are given as:
        t0 = 10
        t1 = 20
        ti = 16  # time of interpolation

        # Find the interpolated position at time ti, n_EB_E_ti

        # SOLUTION:
        # Using standard interpolation:
        n_EB_E_ti = unit(n_EB_E_t0 + (ti - t0) * (n_EB_E_t1 - n_EB_E_t0) /
                         (t1 - t0))

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EB_ti, long_EB_ti = n_E2lat_lon(n_EB_E_ti)
        msg = 'Ex6, Interpolated position: lat, long = {} {} deg'
        print(msg.format(deg(lat_EB_ti), deg(long_EB_ti)))

        assert_array_almost_equal(deg(lat_EB_ti), 89.7999805)
        assert_array_almost_equal(deg(long_EB_ti), 180.)
Пример #4
0
    def test_Ex6_interpolated_position():

        # Position B at time t0 and t2 is given as n_EB_E_t0 and n_EB_E_t1:
        # Enter elements as lat/long in deg:
        n_EB_E_t0 = lat_lon2n_E(rad(89), rad(0))
        n_EB_E_t1 = lat_lon2n_E(rad(89), rad(180))

        # The times are given as:
        t0 = 10
        t1 = 20
        ti = 16  # time of interpolation

        # Find the interpolated position at time ti, n_EB_E_ti

        # SOLUTION:
        # Using standard interpolation:
        n_EB_E_ti = unit(n_EB_E_t0 +
                         (ti - t0) * (n_EB_E_t1 - n_EB_E_t0) / (t1 - t0))

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EB_ti, long_EB_ti = n_E2lat_lon(n_EB_E_ti)
        msg = 'Ex6, Interpolated position: lat, long = {} {} deg'
        print(msg.format(deg(lat_EB_ti), deg(long_EB_ti)))

        assert_array_almost_equal(deg(lat_EB_ti), 89.7999805)
        assert_array_almost_equal(deg(long_EB_ti), 180.)
Пример #5
0
def plot_mean_position():
    """
    Example
    -------
    >>> plot_mean_position()
    Ex7, Average lat=[ 67.23615295], lon=[-6.91751117]
    """
    positions = np.array([
        (90, 0),
        (60, 10),
        (50, -20),
    ])
    lats, lons = positions.T
    nvecs = lat_lon2n_E(rad(lats), rad(lons))

    # Find the horizontal mean position:
    n_EM_E = unit(np.sum(nvecs, axis=1).reshape((3, 1)))
    lat, lon = n_E2lat_lon(n_EM_E)
    lat, lon = deg(lat), deg(lon)
    print(('Ex7, Average lat={0}, lon={1}'.format(lat, lon)))

    map1 = Basemap(projection='ortho',
                   lat_0=int(lat),
                   lon_0=int(lon),
                   resolution='l')
    plot_world(map1)
    x, y = map1(lon, lat)
    map1.scatter(x, y, linewidth=5, marker='o', color='r')

    x1, y1 = map1(lons, lats)
    # print(len(lons), x1, y1)
    map1.scatter(x1, y1, linewidth=5, marker='o', color='k')

    plt.title('Figure of mean position (red dot) compared to positions '
              'A, B, and C (black dots).')
Пример #6
0
def plot_mean_position():
    """
    Example
    -------
    >>> plot_mean_position()
    Ex7, Average lat=67.2, lon=-6.9
    >>> plt.show()  # doctest: +SKIP
    >>> plt.close()
    """
    positions = np.array([
        (90, 0),
        (60, 10),
        (50, -20),
    ])
    lats, lons = np.transpose(positions)
    nvecs = lat_lon2n_E(rad(lats), rad(lons))

    # Find the horizontal mean position:
    n_EM_E = unit(np.sum(nvecs, axis=1).reshape((3, 1)))
    lat, lon = n_E2lat_lon(n_EM_E)
    lat, lon = deg(lat), deg(lon)
    print('Ex7, Average lat={0:2.1f}, lon={1:2.1f}'.format(lat[0], lon[0]))

    plotter = _init_plotter(lat, lon)

    plotter(lon, lat, linewidth=5, marker='o', color='r')
    plotter(lons, lats, linewidth=5, marker='o', color='k')

    plt.title('Figure of mean position (red dot) compared to \npositions '
              'A, B, and C (black dots).')
Пример #7
0
    def test_Ex8_position_A_and_azimuth_and_distance_to_B():

        # Position A is given as n_EA_E:
        # Enter elements as lat/long in deg:
        lat, lon = rad(80), rad(-90)

        n_EA_E = lat_lon2n_E(lat, lon)

        # The initial azimuth and great circle distance (s_AB), and Earth
        # radius (r_Earth) are also given:
        azimuth = rad(200)
        s_AB = 1000  # m
        r_Earth = 6371e3  # m, mean Earth radius

        # Find the destination point B, as n_EB_E ("The direct/first geodetic
        # problem" for a sphere)

        # SOLUTION:
        # Step1: Convert distance in meter into distance in [rad]:
        distance_rad = s_AB / r_Earth
        # Step2: Find n_EB_E:
        n_EB_E = n_EA_E_distance_and_azimuth2n_EB_E(n_EA_E, distance_rad,
                                                    azimuth)

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EB, long_EB = n_E2lat_lon(n_EB_E)
        print('Ex8, Destination: lat, long = {0} {1} deg'.format(
            deg(lat_EB), deg(long_EB)))

        assert_array_almost_equal(deg(lat_EB), 79.99154867)
        assert_array_almost_equal(deg(long_EB), -90.01769837)
        azimuth1 = n_EA_E_and_n_EB_E2azimuth(n_EA_E, n_EB_E, a=r_Earth, f=0)
        assert_array_almost_equal(azimuth, azimuth1 + 2 * np.pi)
Пример #8
0
 def lla2enu(self, init_lla, point_lla):
     n_EA_E = nv.lat_lon2n_E(rad(init_lla[0]), rad(init_lla[1]))
     n_EB_E = nv.lat_lon2n_E(rad(point_lla[0]), rad(point_lla[1]))
     p_AB_E = nv.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, init_lla[2],
                                          point_lla[2])
     R_EN = nv.n_E2R_EN(n_EA_E)
     p_AB_N = np.dot(R_EN.T, p_AB_E).ravel()
     p_AB_N[0], p_AB_N[1] = p_AB_N[1], p_AB_N[0]
     return p_AB_N
Пример #9
0
    def test_Ex9_intersection():

        # Two paths A and B are given by two pairs of positions:
        # Enter elements as lat/long in deg:
        n_EA1_E = lat_lon2n_E(rad(10), rad(20))
        n_EA2_E = lat_lon2n_E(rad(30), rad(40))
        n_EB1_E = lat_lon2n_E(rad(50), rad(60))
        n_EB2_E = lat_lon2n_E(rad(70), rad(80))

        # Find the intersection between the two paths, n_EC_E:
        n_EC_E_tmp = unit(np.cross(np.cross(n_EA1_E, n_EA2_E, axis=0),
                                   np.cross(n_EB1_E, n_EB2_E, axis=0), axis=0))

        # n_EC_E_tmp is one of two solutions, the other is -n_EC_E_tmp. Select
        # the one that is closet to n_EA1_E, by selecting sign from the dot
        # product between n_EC_E_tmp and n_EA1_E:
        n_EC_E = np.sign(np.dot(n_EC_E_tmp.T, n_EA1_E)) * n_EC_E_tmp

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EC, long_EC = n_E2lat_lon(n_EC_E)
        msg = 'Ex9, Intersection: lat, long = {} {} deg'
        print(msg.format(deg(lat_EC), deg(long_EC)))
        assert_array_almost_equal(deg(lat_EC), 40.31864307)
        assert_array_almost_equal(deg(long_EC), 55.90186788)
Пример #10
0
    def test_Ex9_intersect():

        # Two paths A and B are given by two pairs of positions:
        # Enter elements as lat/long in deg:
        n_EA1_E = lat_lon2n_E(rad(10), rad(20))
        n_EA2_E = lat_lon2n_E(rad(30), rad(40))
        n_EB1_E = lat_lon2n_E(rad(50), rad(60))
        n_EB2_E = lat_lon2n_E(rad(70), rad(80))

        # Find the intersection between the two paths, n_EC_E:
        n_EC_E_tmp = unit(
            np.cross(np.cross(n_EA1_E, n_EA2_E, axis=0),
                     np.cross(n_EB1_E, n_EB2_E, axis=0),
                     axis=0))

        # n_EC_E_tmp is one of two solutions, the other is -n_EC_E_tmp. Select
        # the one that is closet to n_EA1_E, by selecting sign from the dot
        # product between n_EC_E_tmp and n_EA1_E:
        n_EC_E = np.sign(np.dot(n_EC_E_tmp.T, n_EA1_E)) * n_EC_E_tmp

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EC, long_EC = n_E2lat_lon(n_EC_E)
        msg = 'Ex9, Intersection: lat, long = {} {} deg'
        print(msg.format(deg(lat_EC), deg(long_EC)))
        assert_array_almost_equal(deg(lat_EC), 40.31864307)
        assert_array_almost_equal(deg(long_EC), 55.90186788)
Пример #11
0
    def test_R2zxy():
        x, y, z = rad((10, 20, 30))
        R_AB1 = zyx2R(z, y, x)
        R_AB = [[0.813798, -0.44097, 0.378522], [0.469846, 0.882564, 0.018028],
                [-0.34202, 0.163176, 0.925417]]

        assert_array_almost_equal(R_AB, R_AB1)
        z1, y1, x1 = R2zyx(R_AB1)
        assert_array_almost_equal((x, y, z), (x1, y1, z1))
Пример #12
0
 def test_R2xyz():
     x, y, z = rad((10, 20, 30))
     R_AB1 = xyz2R(x, y, z)
     R_AB = [[0.81379768, -0.46984631, 0.34202014],
             [0.54383814, 0.82317294, -0.16317591],
             [-0.20487413, 0.31879578, 0.92541658]]
     assert_array_almost_equal(R_AB, R_AB1)
     x1, y1, z1 = R2xyz(R_AB1)
     assert_array_almost_equal((x, y, z), (x1, y1, z1))
Пример #13
0
    def test_Ex5_great_circle_distance():

        # Position A and B are given as n_EA_E and n_EB_E:
        # Enter elements as lat/long in deg:
        n_EA_E = lat_lon2n_E(rad(88), rad(0))
        n_EB_E = lat_lon2n_E(rad(89), rad(-170))

        r_Earth = 6371e3  # m, mean Earth radius

        # SOLUTION:
        s_AB = great_circle_distance(n_EA_E, n_EB_E, radius=r_Earth)
        d_AB = euclidean_distance(n_EA_E, n_EB_E, radius=r_Earth)

        msg = 'Ex5, Great circle distance = {} km, Euclidean distance = {} km'
        print(msg.format(s_AB / 1000, d_AB / 1000))

        assert_array_almost_equal(s_AB / 1000, 332.45644411)
        assert_array_almost_equal(d_AB / 1000, 332.41872486)
Пример #14
0
 def test_R2xyz():
     x, y, z = rad((10, 20, 30))
     R_AB1 = xyz2R(x, y, z)
     R_AB = [[0.81379768, -0.46984631,  0.34202014],
             [0.54383814,  0.82317294, -0.16317591],
             [-0.20487413,  0.31879578,  0.92541658]]
     assert_array_almost_equal(R_AB, R_AB1)
     x1, y1, z1 = R2xyz(R_AB1)
     assert_array_almost_equal((x, y, z), (x1, y1, z1))
Пример #15
0
    def test_Ex5_great_circle_distance():

        # Position A and B are given as n_EA_E and n_EB_E:
        # Enter elements as lat/long in deg:
        n_EA_E = lat_lon2n_E(rad(88), rad(0))
        n_EB_E = lat_lon2n_E(rad(89), rad(-170))

        r_Earth = 6371e3  # m, mean Earth radius

        # SOLUTION:
        s_AB = great_circle_distance(n_EA_E, n_EB_E, radius=r_Earth)
        d_AB = euclidean_distance(n_EA_E, n_EB_E, radius=r_Earth)

        msg = 'Ex5, Great circle distance = {} km, Euclidean distance = {} km'
        print(msg.format(s_AB / 1000, d_AB / 1000))

        assert_array_almost_equal(s_AB / 1000, 332.45644411)
        assert_array_almost_equal(d_AB / 1000, 332.41872486)
Пример #16
0
    def test_Ex1_A_and_B_to_delta_in_frame_N():

        # Positions A and B are given in (decimal) degrees and depths:
        lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
        lat_EB, lon_EB, z_EB = rad(4), rad(5), 6

        # Find the exact vector between the two positions, given in meters
        # north, east, and down, i.e. find p_AB_N.

        # SOLUTION:
        # Step1: Convert to n-vectors (rad() converts to radians):
        n_EA_E = lat_lon2n_E(lat_EA, lon_EA)
        n_EB_E = lat_lon2n_E(lat_EB, lon_EB)

        # Step2: Find p_AB_E (delta decomposed in E).
        # WGS-84 ellipsoid is default:
        p_AB_E = n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)

        # Step3: Find R_EN for position A:
        R_EN = n_E2R_EN(n_EA_E)

        # Step4: Find p_AB_N
        p_AB_N = np.dot(R_EN.T, p_AB_E)
        # (Note the transpose of R_EN: The "closest-rule" says that when
        # decomposing, the frame in the subscript of the rotation matrix that
        # is closest to the vector, should equal the frame where the vector is
        # decomposed. Thus the calculation np.dot(R_NE, p_AB_E) is correct,
        # since the vector is decomposed in E, and E is closest to the vector.
        # In the example we only had R_EN, and thus we must transpose it:
        # R_EN'=R_NE)

        # Step5: Also find the direction (azimuth) to B, relative to north:
        azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
        # positive angle about down-axis

        print('Ex1, delta north, east, down = {0}, {1}, {2}'.format(p_AB_N[0],
                                                                 p_AB_N[1],
                                                                 p_AB_N[2]))
        print('Ex1, azimuth = {0} deg'.format(deg(azimuth)))

        assert_array_almost_equal(p_AB_N[0], 331730.23478089)
        assert_array_almost_equal(p_AB_N[1], 332997.87498927)
        assert_array_almost_equal(p_AB_N[2], 17404.27136194)
        assert_array_almost_equal(deg(azimuth), 45.10926324)
Пример #17
0
 def test_R2xyz_with_vectors():
     x, y, z = rad(((10, 10), (20, 20), (30, 30)))
     R_AB1 = xyz2R(x, y, z)
     R_AB = np.array([[0.81379768, -0.46984631, 0.34202014],
                      [0.54383814, 0.82317294, -0.16317591],
                      [-0.20487413, 0.31879578, 0.92541658]])[:, :, None]
     R_AB = np.concatenate((R_AB, R_AB), axis=2)
     assert_array_almost_equal(R_AB, R_AB1)
     x1, y1, z1 = R2xyz(R_AB1)
     assert_array_almost_equal((x, y, z), (x1, y1, z1))
Пример #18
0
    def test_Ex1_A_and_B_to_delta_in_frame_N():

        # Positions A and B are given in (decimal) degrees and depths:
        lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
        lat_EB, lon_EB, z_EB = rad(4), rad(5), 6

        # Find the exact vector between the two positions, given in meters
        # north, east, and down, i.e. find p_AB_N.

        # SOLUTION:
        # Step1: Convert to n-vectors (rad() converts to radians):
        n_EA_E = lat_lon2n_E(lat_EA, lon_EA)
        n_EB_E = lat_lon2n_E(lat_EB, lon_EB)

        # Step2: Find p_AB_E (delta decomposed in E).
        # WGS-84 ellipsoid is default:
        p_AB_E = n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)

        # Step3: Find R_EN for position A:
        R_EN = n_E2R_EN(n_EA_E)

        # Step4: Find p_AB_N
        p_AB_N = np.dot(R_EN.T, p_AB_E)
        # (Note the transpose of R_EN: The "closest-rule" says that when
        # decomposing, the frame in the subscript of the rotation matrix that
        # is closest to the vector, should equal the frame where the vector is
        # decomposed. Thus the calculation np.dot(R_NE, p_AB_E) is correct,
        # since the vector is decomposed in E, and E is closest to the vector.
        # In the example we only had R_EN, and thus we must transpose it:
        # R_EN'=R_NE)

        # Step5: Also find the direction (azimuth) to B, relative to north:
        azimuth = np.arctan2(p_AB_N[1], p_AB_N[0])
        # positive angle about down-axis

        print('Ex1, delta north, east, down = {0}, {1}, {2}'.format(
            p_AB_N[0], p_AB_N[1], p_AB_N[2]))
        print('Ex1, azimuth = {0} deg'.format(deg(azimuth)))

        assert_array_almost_equal(p_AB_N[0], 331730.23478089)
        assert_array_almost_equal(p_AB_N[1], 332997.87498927)
        assert_array_almost_equal(p_AB_N[2], 17404.27136194)
        assert_array_almost_equal(deg(azimuth), 45.10926324)
Пример #19
0
    def test_R2zxy():
        x, y, z = rad((10, 20, 30))
        R_AB1 = zyx2R(z, y, x)
        R_AB = [[0.813798, -0.44097, 0.378522],
                [0.469846, 0.882564, 0.018028],
                [-0.34202, 0.163176, 0.925417]]

        assert_array_almost_equal(R_AB, R_AB1)
        z1, y1, x1 = R2zyx(R_AB1)
        assert_array_almost_equal((x, y, z), (x1, y1, z1))
Пример #20
0
    def test_Ex4_geodetic_latitude_to_ECEF_vector():

        # Position B is given with lat, long and height:
        lat_EB_deg = 1
        long_EB_deg = 2
        h_EB = 3

        # Find the vector p_EB_E ("ECEF-vector")

        # SOLUTION:
        # Step1: Convert to n-vector:
        n_EB_E = lat_lon2n_E(rad(lat_EB_deg), rad(long_EB_deg))

        # Step2: Find the ECEF-vector p_EB_E:
        p_EB_E = n_EB_E2p_EB_E(n_EB_E, -h_EB)

        print('Ex4: p_EB_E = {0} m'.format(p_EB_E.ravel()))

        assert_array_almost_equal(
            p_EB_E.ravel(),
            [6373290.27721828, 222560.20067474, 110568.82718179])
Пример #21
0
    def test_Ex4_geodetic_latitude_to_ECEF_vector():

        # Position B is given with lat, long and height:
        lat_EB_deg = 1
        long_EB_deg = 2
        h_EB = 3

        # Find the vector p_EB_E ("ECEF-vector")

        # SOLUTION:
        # Step1: Convert to n-vector:
        n_EB_E = lat_lon2n_E(rad(lat_EB_deg), rad(long_EB_deg))

        # Step2: Find the ECEF-vector p_EB_E:
        p_EB_E = n_EB_E2p_EB_E(n_EB_E, -h_EB)

        print('Ex4: p_EB_E = {0} m'.format(p_EB_E.ravel()))

        assert_array_almost_equal(p_EB_E.ravel(),
                                  [6373290.27721828, 222560.20067474,
                                   110568.82718179])
Пример #22
0
    def test_Ex10_cross_track_distance():

        # Position A1 and A2 and B are given as n_EA1_E, n_EA2_E, and n_EB_E:
        # Enter elements as lat/long in deg:
        n_EA1_E = lat_lon2n_E(rad(0), rad(0))
        n_EA2_E = lat_lon2n_E(rad(10), rad(0))
        n_EB_E = lat_lon2n_E(rad(1), rad(0.1))

        r_Earth = 6371e3  # m, mean Earth radius

        # Find the cross track distance from path A to position B.

        # SOLUTION:
        # Find the unit normal to the great circle:
        c_E = unit(np.cross(n_EA1_E, n_EA2_E, axis=0))

        # Find the great circle cross track distance:
        s_xt = (np.arccos(np.dot(c_E.T, n_EB_E)) - np.pi / 2) * r_Earth

        # Find the Euclidean cross track distance:
        d_xt = -np.dot(c_E.T, n_EB_E) * r_Earth
        msg = 'Ex10, Cross track distance = {} m, Euclidean = {} m'
        print(msg.format(s_xt, d_xt))

        assert_array_almost_equal(s_xt, 11117.79911015)
        assert_array_almost_equal(d_xt, 11117.79346741)
Пример #23
0
    def test_Ex10_cross_track_distance():

        # Position A1 and A2 and B are given as n_EA1_E, n_EA2_E, and n_EB_E:
        # Enter elements as lat/long in deg:
        n_EA1_E = lat_lon2n_E(rad(0), rad(0))
        n_EA2_E = lat_lon2n_E(rad(10), rad(0))
        n_EB_E = lat_lon2n_E(rad(1), rad(0.1))

        radius = 6371e3  # m, mean Earth radius

        # Find the cross track distance from path A to position B.

        # SOLUTION:
        # Find the unit normal to the great circle:
        c_E = unit(np.cross(n_EA1_E, n_EA2_E, axis=0))
        # Find the great circle cross track distance:
        s_xt = -np.arcsin(np.dot(c_E.T, n_EB_E)) * radius

        # Find the Euclidean cross track distance:
        d_xt = -np.dot(c_E.T, n_EB_E) * radius
        msg = 'Ex10, Cross track distance = {} m, Euclidean = {} m'
        print(msg.format(s_xt, d_xt))

        assert_array_almost_equal(s_xt, 11117.79911015)
        assert_array_almost_equal(d_xt, 11117.79346741)
Пример #24
0
    def test_Ex2_B_and_delta_in_frame_B_to_C_in_frame_E():
        # delta vector from B to C, decomposed in B is given:
        p_BC_B = np.r_[3000, 2000, 100].reshape((-1, 1))

        # Position and orientation of B is given:
        n_EB_E = unit([[1], [2], [3]])  # unit to get unit length of vector
        z_EB = -400
        R_NB = zyx2R(rad(10), rad(20), rad(30))
        # the three angles are yaw, pitch, and roll

        # A custom reference ellipsoid is given (replacing WGS-84):
        a, f = 6378135, 1.0 / 298.26  # (WGS-72)

        # Find the position of C.
        # SOLUTION:
        # Step1: Find R_EN:
        R_EN = n_E2R_EN(n_EB_E)

        # Step2: Find R_EB, from R_EN and R_NB:
        R_EB = np.dot(R_EN, R_NB)  # Note: closest frames cancel

        # Step3: Decompose the delta vector in E:
        p_BC_E = np.dot(R_EB, p_BC_B)
        # no transpose of R_EB, since the vector is in B

        # Step4: Find the position of C, using the functions that goes from one
        # position and a delta, to a new position:
        n_EC_E, z_EC = n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB, a, f)

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EC, long_EC = n_E2lat_lon(n_EC_E)
        # Here we also assume that the user wants output height (= - depth):
        msg = 'Ex2, Pos C: lat, long = {},{} deg,  height = {} m'
        print(msg.format(deg(lat_EC), deg(long_EC), -z_EC))

        assert_array_almost_equal(deg(lat_EC), 53.32637826)
        assert_array_almost_equal(deg(long_EC), 63.46812344)
        assert_array_almost_equal(z_EC, -406.00719607)
Пример #25
0
    def test_Ex2_B_and_delta_in_frame_B_to_C_in_frame_E():
        # delta vector from B to C, decomposed in B is given:
        p_BC_B = np.r_[3000, 2000, 100].reshape((-1, 1))

        # Position and orientation of B is given:
        n_EB_E = unit([[1], [2], [3]])  # unit to get unit length of vector
        z_EB = -400
        R_NB = zyx2R(rad(10), rad(20), rad(30))
        # the three angles are yaw, pitch, and roll

        # A custom reference ellipsoid is given (replacing WGS-84):
        a, f = 6378135, 1.0 / 298.26  # (WGS-72)

        # Find the position of C.
        # SOLUTION:
        # Step1: Find R_EN:
        R_EN = n_E2R_EN(n_EB_E)

        # Step2: Find R_EB, from R_EN and R_NB:
        R_EB = np.dot(R_EN, R_NB)  # Note: closest frames cancel

        # Step3: Decompose the delta vector in E:
        p_BC_E = np.dot(R_EB, p_BC_B)
        # no transpose of R_EB, since the vector is in B

        # Step4: Find the position of C, using the functions that goes from one
        # position and a delta, to a new position:
        n_EC_E, z_EC = n_EA_E_and_p_AB_E2n_EB_E(n_EB_E, p_BC_E, z_EB, a, f)

        # When displaying the resulting position for humans, it is more
        # convenient to see lat, long:
        lat_EC, long_EC = n_E2lat_lon(n_EC_E)
        # Here we also assume that the user wants output height (= - depth):
        msg = 'Ex2, Pos C: lat, long = {},{} deg,  height = {} m'
        print(msg.format(deg(lat_EC), deg(long_EC), -z_EC))

        assert_array_almost_equal(deg(lat_EC), 53.32637826)
        assert_array_almost_equal(deg(long_EC), 63.46812344)
        assert_array_almost_equal(z_EC, -406.00719607)
Пример #26
0
    def setNed(self, current, target):
        lat_C, lon_C = rad(current.lat), rad(current.lon)
        lat_T, lon_T = rad(target.lat), rad(target.lon)
        # create an n-vector for current and target
        nvecC = nv.lat_lon2n_E(lat_C, lon_C)
        nvecT = nv.lat_lon2n_E(lat_T, lon_T)
        # create a p-vec from C to T in the Earth's frame
        # the zeros are for the depth (depth = -1 * altitude)
        p_CT_E = nv.n_EA_E_and_n_EB_E2p_AB_E(nvecC, nvecT, 0, 0)
        # create a rotation matrix
        # this rotates points from the NED frame to the Earth's frame
        R_EN = nv.n_E2R_EN(nvecC)
        # rotate p_CT_E so it lines up with current's NED frame
        # we use the transpose so we can go from the Earth's frame to the NED frame
        n, e, d = np.dot(R_EN.T, p_CT_E).ravel()

        #Scale Nedvalues
        if n > e:
            scaleFactor = abs(1.00000 / n)
        else:
            scaleFactor = abs(1.00000 / e)

        return Nedvalues(n * scaleFactor, e * scaleFactor, d)
Пример #27
0
    def test_Ex7_mean_position():

        # Three positions A, B and C are given:
        # Enter elements as lat/long in deg:
        n_EA_E = lat_lon2n_E(rad(90), rad(0))
        n_EB_E = lat_lon2n_E(rad(60), rad(10))
        n_EC_E = lat_lon2n_E(rad(50), rad(-20))

        # Find the horizontal mean position:
        n_EM_E = unit(n_EA_E + n_EB_E + n_EC_E)

        # The result is best viewed with a figure that shows the n-vectors
        # relative to an Earth-model:
        print('Ex7, See figure')
        # plot_Earth_figure(n_EA_E,n_EB_E,n_EC_E,n_EM_E)
        assert_array_almost_equal(n_EM_E.ravel(),
                                  [0.384117, -0.046602, 0.922107])
        # Alternatively:
        n_EM_E = mean_horizontal_position(np.hstack((n_EA_E, n_EB_E, n_EC_E)))
        assert_array_almost_equal(n_EM_E.ravel(),
                                  [0.384117, -0.046602, 0.922107])
Пример #28
0
    def test_Ex7_mean_position():

        # Three positions A, B and C are given:
        # Enter elements as lat/long in deg:
        n_EA_E = lat_lon2n_E(rad(90), rad(0))
        n_EB_E = lat_lon2n_E(rad(60), rad(10))
        n_EC_E = lat_lon2n_E(rad(50), rad(-20))

        # Find the horizontal mean position:
        n_EM_E = unit(n_EA_E + n_EB_E + n_EC_E)

        # The result is best viewed with a figure that shows the n-vectors
        # relative to an Earth-model:
        print('Ex7, See figure')
        # plot_Earth_figure(n_EA_E,n_EB_E,n_EC_E,n_EM_E)
        assert_array_almost_equal(n_EM_E.ravel(),
                                  [0.384117, -0.046602, 0.922107])
        # Alternatively:
        n_EM_E = mean_horizontal_position(np.hstack((n_EA_E, n_EB_E, n_EC_E)))
        assert_array_almost_equal(n_EM_E.ravel(),
                                  [0.384117, -0.046602, 0.922107])
Пример #29
0
    def test_small_and_large_cross_track_distance(self):
        radius = 6371e3  # m, mean Earth radius
        n_EA1_E = lat_lon2n_E(rad(5), rad(10))
        n_EA2_E = lat_lon2n_E(rad(10), rad(10))
        n_EB0_E = lat_lon2n_E(rad(7), rad(10.1))

        path = (n_EA1_E, n_EA2_E)
        n_EB1_E = closest_point_on_great_circle(path, n_EB0_E)

        for s_xt0 in [np.pi / 3 * radius, 10., 0.1, 1e-4, 1e-8]:
            distance_rad = s_xt0 / radius
            n_EB_E = n_EA_E_distance_and_azimuth2n_EB_E(
                n_EB1_E, distance_rad, np.pi / 2)

            n_EB2_E = closest_point_on_great_circle(path, n_EB_E)
            s_xt = great_circle_distance(n_EB1_E, n_EB_E, radius)
            c_E = unit(np.cross(n_EA1_E, n_EA2_E, axis=0))
            s_xt2 = (np.arccos(np.dot(c_E.T, n_EB_E)) - np.pi / 2) * radius
            s_xt3 = cross_track_distance(path,
                                         n_EB_E,
                                         method='greatcircle',
                                         radius=radius)

            s_xt4 = np.arctan2(
                -np.dot(c_E.T, n_EB_E),
                np.linalg.norm(np.cross(c_E, n_EB_E, axis=0), axis=0)) * radius
            assert_array_almost_equal(n_EB2_E, n_EB1_E)
            assert_array_almost_equal(s_xt, s_xt0)
            assert_array_almost_equal(s_xt2, s_xt0)
            assert_array_almost_equal(s_xt3, s_xt0)
            assert_array_almost_equal(s_xt4, s_xt0)
            rtol = 10**(-min(9 + np.log10(s_xt0), 15))
            self.assertTrue(np.abs(s_xt - s_xt0) / s_xt0 < rtol, 's_xt fails')
            self.assertTrue(
                np.abs(s_xt2 - s_xt0) / s_xt0 < rtol, 's_xt2 fails')
            self.assertTrue(
                np.abs(s_xt3 - s_xt0) / s_xt0 < rtol, 's_xt3 fails')
            self.assertTrue(
                np.abs(s_xt4 - s_xt0) / s_xt0 < rtol, 's_xt4 fails')
Пример #30
0
import geographiclib
import numpy as np
import nvector as nv
from nvector import rad, deg

# lat_EA, lon_EA, z_EA = rad(1), rad(2), 3
# lat_EB, lon_EB, z_EB = rad(1), rad(2), 11

# n_EA_E = nv.lat_lon2n_E(lat_EA, lon_EA)
# n_EB_E = nv.lat_lon2n_E(lat_EB, lon_EB)

# p_AB_E = nv.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB)
# R_EN = nv.n_E2R_EN(n_EA_E)
# p_AB_N = np.dot(R_EN.T, p_AB_E).ravel()


def lla2enu(init_lla,point_lla):
    n_EA_E = nv.lat_lon2n_E(init_lla[0], init_lla[1])
    n_EB_E = nv.lat_lon2n_E(point_lla[0], point_lla[1])
    p_AB_E = nv.n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, init_lla[2], point_lla[2])
    R_EN = nv.n_E2R_EN(n_EA_E)
    p_AB_N = np.dot(R_EN.T, p_AB_E).ravel()
    p_AB_N[0],p_AB_N[1] = p_AB_N[1],p_AB_N[0]
    return p_AB_N

init_lla = np.array([rad(47.5094),rad(6.79395),367.163])
point_lla = np.array([rad(47.5115),rad(6.79323),414.594])
print(lla2enu(init_lla,point_lla))