Пример #1
0
def test_separated_exec_setup():
    batch_size = 128
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=3,
                    device_id=None,
                    prefetch_queue_depth={
                        "cpu_size": 5,
                        "gpu_size": 3
                    })
    inputs, labels = fn.caffe_reader(path=caffe_dir, shard_id=0, num_shards=1)
    images = fn.image_decoder(inputs, output_type=types.RGB)
    images = fn.resize(images, resize_x=224, resize_y=224)
    images_cpu = fn.dump_image(images, suffix="cpu")
    pipe.set_outputs(images, images_cpu)

    pipe.build()
    out = pipe.run()
    assert (out[0].is_dense_tensor())
    assert (out[1].is_dense_tensor())
    assert (out[0].as_tensor().shape() == out[1].as_tensor().shape())
    a_raw = out[0]
    a_cpu = out[1]
    for i in range(batch_size):
        t_raw = a_raw.at(i)
        t_cpu = a_cpu.at(i)
        assert (np.sum(np.abs(t_cpu - t_raw)) == 0)
Пример #2
0
def test_caffe_reader_cpu():
    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=None)
    out, _ = fn.caffe_reader(path=caffe_dir, shard_id=0, num_shards=1)
    pipe.set_outputs(out)
    pipe.build()
    for _ in range(3):
        pipe.run()
Пример #3
0
def test_compose_change_device():
    batch_size = 3
    pipe = Pipeline(batch_size, 1, 0)

    size = fn.uniform(shape=2, range=(300,500))
    c = ops.Compose([
        ops.ImageDecoder(device="cpu"),
        ops.Resize(size=size, device="gpu")
    ])
    files, labels = fn.caffe_reader(path=caffe_db_folder, seed=1)
    pipe.set_outputs(c(files), fn.resize(fn.image_decoder(files).gpu(), size=size))

    pipe.build()
    out = pipe.run()
    assert isinstance(out[0], dali.backend.TensorListGPU)
    test_utils.check_batch(out[0], out[1], batch_size=batch_size)