Пример #1
0
 def make_pipe():
     image = fn.external_source(source=image_gen)
     if device == "gpu":
         image = image.gpu()
     if get_dynamic_axes:
         axes, rel_start, rel_shape = fn.external_source(
             source=get_dynamic_axes, num_outputs=3)
     else:
         axes = types.Constant(np.array([0, 1], dtype=np.int32),
                               device="cpu")
         rel_start = fn.random.uniform(range=(0.1, 0.2),
                                       shape=(2, ),
                                       dtype=types.FLOAT,
                                       device=args_device)
         rel_shape = fn.random.uniform(range=(0.4, 0.6),
                                       shape=(2, ),
                                       dtype=types.FLOAT,
                                       device=args_device)
     if args_device == "gpu":
         sliced = fn.slice(image, rel_start, rel_shape, axes=axes)
         return image, axes, rel_start, rel_shape, sliced
     else:
         sliced1 = fn.slice(image,
                            rel_start=rel_start,
                            rel_shape=rel_shape,
                            axes=axes)
         sliced2 = fn.slice(image, rel_start, rel_shape, axes=axes)
         return image, axes, rel_start, rel_shape, sliced1, sliced2
Пример #2
0
def check_slice_named_args_default_start_or_end(device, batch_size):
    test_data_shape = [5, 4, 3]

    def get_data():
        out = [
            np.random.randint(0, 255, size=test_data_shape, dtype=np.uint8)
            for _ in range(batch_size)
        ]
        return out

    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=0)
    with pipe:
        data = fn.external_source(source=get_data, layout="HWC")
        in_shape = np.array([5, 4])
        start = np.array([1, 2])
        shape = np.array([3, 1])
        end = start + shape
        rel_start = start / in_shape
        rel_shape = shape / in_shape
        rel_end = end / in_shape
        outs = [
            fn.slice(data, start=start, end=in_shape, axes=(0, 1)),
            fn.slice(data, start=[0, 0], end=end, axes=(0, 1)),
            fn.slice(data, start=start, axes=(0, 1)),
            fn.slice(data, end=end, axes=(0, 1)),
        ]
        pipe.set_outputs(*outs)
    pipe.build()
    for _ in range(3):
        outs = pipe.run()
        for sample in range(batch_size):
            np.testing.assert_equal(np.array(outs[0][sample]),
                                    np.array(outs[2][sample]))
            np.testing.assert_equal(np.array(outs[1][sample]),
                                    np.array(outs[3][sample]))
Пример #3
0
    def define_graph(self):
        inputs, bboxes, labels, polygons, vertices = fn.readers.coco(
                                            file_root=self.file_root,
                                            annotations_file=self.annotation_file,
                                            skip_empty=True,
                                            shard_id=self.share_id,
                                            num_shards=self.num_gpus,
                                            ratio=True,
                                            ltrb=True,
                                            polygon_masks = True,
                                            random_shuffle=self.random_shuffle,
                                            shuffle_after_epoch=self.shuffle_after_epoch,
                                            name="Reader")

        input_shape = fn.slice(fn.cast(fn.peek_image_shape(inputs), dtype=types.INT32), 0, 2, axes=[0])
        h = fn.slice(input_shape, 0, 1, axes = [0], dtype=types.FLOAT)
        w = fn.slice(input_shape, 1, 1, axes = [0], dtype=types.FLOAT)
        short_side = math.min(w, h)        
        scale = fn.random.uniform(range=[0.3, 1.])
        crop_side = fn.cast(math.ceil(scale * short_side), dtype=types.INT32)    
        crop_shape = fn.cat(crop_side, crop_side)
        anchor_rel, shape_rel, bboxes, labels, bbox_indices = fn.random_bbox_crop(
                        bboxes,
                        labels,
                        input_shape=input_shape,
                        crop_shape=crop_shape,
                        shape_layout="HW",
                        thresholds=[0.],            # No minimum intersection-over-union, for demo purposes
                        allow_no_crop=False,        # No-crop is disallowed, for demo purposes 
                        seed=-1,                    # Fixed random seed for deterministic results
                        bbox_layout="xyXY",         # left, top, right, back
                        output_bbox_indices=True,   # Output indices of the filtered bounding boxes
                        total_num_attempts=1024,
        )
        polygons, vertices = fn.segmentation.select_masks(
            bbox_indices, polygons, vertices
        )
        images = fn.decoders.image_slice(
            inputs, anchor_rel, shape_rel, normalized_anchor=False, normalized_shape=False, device='mixed'
        )
        images = fn.color_space_conversion(images, image_type=types.RGB, output_type=types.BGR)
        MT_1_vertices = fn.transforms.crop(
            to_start=(0.0, 0.0), to_end=fn.cat(w, h)
        )    
        MT_2_vertices = fn.transforms.crop(
            from_start=anchor_rel, from_end=(anchor_rel + shape_rel),
            to_start=(0.0, 0.0), to_end=(1., 1.)
        )    
        vertices = fn.coord_transform(fn.coord_transform(vertices, MT=MT_1_vertices), MT=MT_2_vertices)    
        targets = fn.cat( bboxes, fn.reshape(vertices, shape=[-1, 10]), axis=1)

        interp_methods = [types.INTERP_LINEAR, types.INTERP_CUBIC, types.INTERP_LANCZOS3, types.INTERP_GAUSSIAN, types.INTERP_NN, types.INTERP_TRIANGULAR]
        interp_method = fn.random.uniform(values=[int(x) for x in interp_methods], dtype=types.INT32)
        interp_method = fn.reinterpret(interp_method, dtype=types.INTERP_TYPE)
        images = fn.resize(images, dtype=types.FLOAT, size=self.input_dim, interp_type=interp_method)

        labels = labels.gpu()
        targets = targets.gpu()
        return (images, targets, labels)
Пример #4
0
 def make_pipe():
     image = fn.external_source(source=image_gen)
     if device == 'gpu':
         image = image.gpu()
     axes, rel_start, rel_shape = fn.external_source(source=get_dynamic_axes, num_outputs=3)
     sliced1 = fn.slice(image, rel_start=rel_start, rel_shape=rel_shape, axes=axes)
     sliced2 = fn.slice(image, rel_start, rel_shape, axes=axes)
     return image, axes, rel_start, rel_shape, sliced1, sliced2
Пример #5
0
 def crop_fn(self, img, lbl):
     center = fn.segmentation.random_mask_pixel(lbl, foreground=fn.coin_flip(probability=self.oversampling))
     crop_anchor = self.slice_fn(center, 1, self.dim) - self.crop_shape // 2
     adjusted_anchor = math.max(0, crop_anchor)
     max_anchor = self.slice_fn(fn.shapes(lbl), 1, self.dim) - self.crop_shape
     crop_anchor = math.min(adjusted_anchor, max_anchor)
     img = fn.slice(img.gpu(), crop_anchor, self.crop_shape, axis_names=self.axis_name, out_of_bounds_policy="pad")
     lbl = fn.slice(lbl.gpu(), crop_anchor, self.crop_shape, axis_names=self.axis_name, out_of_bounds_policy="pad")
     return img, lbl
Пример #6
0
 def make_pipe():
     encoded, _ = fn.readers.caffe(path=caffe_db_folder, random_shuffle=False)
     image = fn.decoders.image(encoded, device="cpu", output_type=types.RGB)
     if device == 'gpu':
         image = image.gpu()
     image = fn.cast(image, dtype=dtype)
     sliced1 = fn.slice(image, 0, 3, axes=(2,))
     sliced2 = fn.slice(image, rel_start=(0, 0, 0), rel_end=(1, 1, 1), axis_names="HWC")
     return image, sliced1, sliced2
Пример #7
0
 def make_pipe():
     fake_data = fn.constant(idata=0, shape=[10, 10, 3], dtype=types.FLOAT, device=device)
     axes = fn.random.uniform(range=wrong_axes_range, shape=(2,), dtype=types.INT32)
     rel_start = fn.random.uniform(range=[0.0, 0.3], shape=(2,), dtype=types.FLOAT)
     rel_shape = fn.random.uniform(range=[0.4, 0.6], shape=(2,), dtype=types.FLOAT)
     if named_args:
         sliced = fn.slice(fake_data, rel_start=rel_start, rel_shape=rel_shape, axes=axes)
     else:
         sliced = fn.slice(fake_data, rel_start, rel_shape, axes=axes)
     return sliced
Пример #8
0
def test_slice_fn():
    pipe = dali.pipeline.Pipeline(1,1,0)
    src = fn.external_source([[np.array([[10,11,12],[13,14,15],[16,17,18]], dtype=np.float32)]])
    out_cpu = fn.slice(src, np.array([1,1]), np.array([2,1]), axes=[0,1])
    out_gpu = fn.slice(src.gpu(), np.array([1,1]), np.array([2,1]), axes=[0,1])
    pipe.set_outputs(out_cpu, out_gpu)
    pipe.build()
    o = pipe.run()
    assert np.array_equal(o[0].at(0), np.array([[14],[17]]))
    assert np.array_equal(o[1].as_cpu().at(0), np.array([[14],[17]]))
Пример #9
0
 def crop_fn(self, img, lbl):
     center = fn.segmentation.random_mask_pixel(lbl, foreground=fn.coin_flip(probability=self.oversampling, **self.aug_seed_kwargs),
                                                **self.aug_seed_kwargs)
     crop_anchor = self.slice_fn(center) - self.crop_shape // 2
     adjusted_anchor = math.max(0, crop_anchor)
     max_anchor = self.slice_fn(fn.shapes(lbl)) - self.crop_shape
     crop_anchor = math.min(adjusted_anchor, max_anchor)
     img = fn.slice(img, crop_anchor, self.crop_shape, axis_names="DHW", out_of_bounds_policy="pad")
     lbl = fn.slice(lbl, crop_anchor, self.crop_shape, axis_names="DHW", out_of_bounds_policy="pad")
     return img, lbl
Пример #10
0
def dali_reflect_pad_graph(x, x_len, pad_amount):
    def flip_1d(x):
        # TODO(janton): remove the layout trick when Flip supports arbitrary data layouts
        x = fn.reshape(x, shape=(-1, 1, 1), layout="HWC")
        x = fn.flip(x, vertical=1)
        x = fn.reshape(x, shape=(-1, ), layout="t")
        return x

    pad_start = fn.slice(x, 1, pad_amount, axes=(0, ))
    pad_start = flip_1d(pad_start)

    pad_end = fn.slice(x, x_len - pad_amount - 1, pad_amount, axes=(0, ))
    pad_end = flip_1d(pad_end)
    x = fn.cat(pad_start, x, pad_end, axis=0)
    return x
Пример #11
0
def slice_pipeline(get_anchor, get_shape):
    data = fn.external_source(source=get_data, layout='HWC')
    anchors = fn.external_source(source=get_anchor)
    shape = fn.external_source(source=get_shape)
    processed = fn.slice(data, anchors, shape, out_of_bounds_policy='pad')

    return processed
Пример #12
0
def check_slice_named_args_errors(device, batch_size):
    test_data_shape = [5, 4, 3]

    def get_data():
        out = [
            np.random.randint(0, 255, size=test_data_shape, dtype=np.uint8)
            for _ in range(batch_size)
        ]
        return out

    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=0)
    with pipe:
        data = fn.external_source(source=get_data, layout="HWC")
        in_shape = np.array([5, 4])
        start = np.array([1, 2])
        shape = np.array([3, 1])
        outs = [
            fn.slice(data,
                     start,
                     shape,
                     start=start,
                     end=start + shape,
                     shape=shape,
                     axes=(0, 1)),
        ]
        pipe.set_outputs(*outs)
    with assert_raises(RuntimeError):
        pipe.build()
        for _ in range(1):
            outs = pipe.run()
Пример #13
0
def create_decoder_slice_pipeline(data_path, device):
    jpegs, _ = fn.readers.file(file_root = data_path,
                               shard_id = 0,
                               num_shards = 1,
                               name = "Reader")

    anchor = fn.random.uniform(range=[0.05, 0.15], shape=(2,))
    shape = fn.random.uniform(range=[0.5, 0.7], shape=(2,))
    images_sliced_1 = fn.decoders.image_slice(jpegs,
                                              anchor,
                                              shape,
                                              device = device,
                                              hw_decoder_load = 0.7,
                                              output_type = types.RGB,
                                              axes = (0, 1))

    images = fn.decoders.image(jpegs,
                               device = device,
                               hw_decoder_load = 0.7,
                               output_type = types.RGB)
    images_sliced_2 = fn.slice(images,
                               anchor,
                               shape,
                               axes = (0, 1))

    return images_sliced_1, images_sliced_2
Пример #14
0
    def define_graph(self):
        jpegs, dummy_labels = self.input()
        self.labels = self.label()
        self.crop_dim = self.crops()
        anchor =  fn.reshape(fn.slice(self.crop_dim, 0, 2, axes=[1]), shape=[-1])
        shape = fn.reshape(fn.slice(self.crop_dim, 2, 2, axes = [1]), shape= [-1])
        anchor = self.cast(anchor)
        shape = self.cast(shape)
        images = self.decode(jpegs)
        images = self.res(images)


#       decode and slicing
        jpegs = fn.slice(jpegs, anchor, shape, axes= [0,1], device= 'gpu')
        jpegs = self.res(jpegs)

        return (images, self.labels, self.crop_dim)
 def jpeg_distortion_pipe(device='cpu', quality=None):
     iii = InputImagesIter(seq_len)
     inputs = fn.external_source(source=iii, layout='FHWC', batch=False)
     if device == 'gpu':
         inputs = inputs.gpu()
     if quality is None:
         quality = fn.random.uniform(range=[1, 99], dtype=types.INT32)
     tmp = fn.jpeg_compression_distortion(inputs, quality=quality)
     outs = []
     for i in range(seq_len):
         # First, slice of the distorted sequence
         outs.append(fn.slice(tmp, axes=(0, ), start=(i, ), end=(i + 1, )))
         # Second, distorted slice of the input
         slice_in = fn.slice(inputs, axes=(0, ), start=(i, ), end=(i + 1, ))
         outs.append(
             fn.jpeg_compression_distortion(slice_in, quality=quality))
     return tuple(outs)
Пример #16
0
 def pipe(max_batch_size, input_data, device):
     pipe = Pipeline(batch_size=max_batch_size, num_threads=4, device_id=0)
     anch = fn.constant(fdata=.1, device='cpu')
     sh = fn.constant(fdata=.5, device='cpu')
     data = fn.external_source(source=input_data, cycle=False, device=device)
     processed = fn.slice(data, anch, sh, axes=0, device=device)
     pipe.set_outputs(processed)
     return pipe
Пример #17
0
 def test_pipe():
     data = fn.external_source(source=get_data)
     shape = types.ScalarConstant(10)
     anchor = types.ScalarConstant(5)
     if device != 'cpu':
         data = data.gpu()
     sliced = fn.slice(data, start = anchor, shape = shape, axes=[0], device=device)
     return data, sliced, shape, anchor
Пример #18
0
    def biased_crop_fn(self, img, label):
        roi_start, roi_end = fn.segmentation.random_object_bbox(
            label,
            format="start_end",
            foreground_prob=self.oversampling,
            background=0,
            seed=self.internal_seed,
            device="cpu",
            cache_objects=True,
        )

        anchor = fn.roi_random_crop(label, roi_start=roi_start, roi_end=roi_end, crop_shape=[1, *self.patch_size])
        anchor = fn.slice(anchor, 1, 3, axes=[0])  # drop channels from anchor
        img, label = fn.slice(
            [img, label], anchor, self.crop_shape, axis_names="DHW", out_of_bounds_policy="pad", device="cpu"
        )

        return img.gpu(), label.gpu()
def check_random_mask_pixel(ndim=2, batch_size=3,
                            min_extent=20, max_extent=50):
    pipe = dali.pipeline.Pipeline(batch_size=batch_size, num_threads=4, device_id=0, seed=1234)
    with pipe:
        # Input mask
        in_shape_dims = [fn.cast(fn.random.uniform(range=(min_extent, max_extent + 1)),
                                 dtype=types.INT32) for _ in range(ndim)]
        in_shape = fn.stack(*in_shape_dims)
        in_mask = fn.cast(fn.random.uniform(range=(0, 2), shape=in_shape), dtype=types.INT32)

        #  > 0
        fg_pixel1 = fn.segmentation.random_mask_pixel(in_mask, foreground=1)
        #  >= 0.99
        fg_pixel2 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, threshold=0.99)
        #  == 2
        fg_pixel3 = fn.segmentation.random_mask_pixel(in_mask, foreground=1, value=2)

        rnd_pixel = fn.segmentation.random_mask_pixel(in_mask, foreground=0)

        coin_flip = fn.random.coin_flip(probability=0.7)
        fg_biased = fn.segmentation.random_mask_pixel(in_mask, foreground=coin_flip)

        # Demo purposes: Taking a random pixel and produce a valid anchor to feed slice
        # We want to force the center adjustment, thus the large crop shape
        crop_shape = in_shape - 2
        anchor = fn.cast(fg_pixel1, dtype=types.INT32) - crop_shape // 2
        anchor = math.min(math.max(0, anchor), in_shape - crop_shape)
        out_mask = fn.slice(in_mask, anchor, crop_shape, axes=tuple(range(ndim)))

    pipe.set_outputs(in_mask, fg_pixel1, fg_pixel2, fg_pixel3, rnd_pixel, coin_flip, fg_biased,
                     anchor, crop_shape, out_mask)
    pipe.build()
    for iter in range(3):
        outputs = pipe.run()
        for idx in range(batch_size):
            in_mask = outputs[0].at(idx)
            fg_pixel1 = outputs[1].at(idx).tolist()
            fg_pixel2 = outputs[2].at(idx).tolist()
            fg_pixel3 = outputs[3].at(idx).tolist()
            rnd_pixel = outputs[4].at(idx).tolist()
            coin_flip = outputs[5].at(idx).tolist()
            fg_biased = outputs[6].at(idx).tolist()
            anchor = outputs[7].at(idx).tolist()
            crop_shape = outputs[8].at(idx).tolist()
            out_mask = outputs[9].at(idx)

            assert in_mask[tuple(fg_pixel1)] > 0
            assert in_mask[tuple(fg_pixel2)] > 0.99
            assert in_mask[tuple(fg_pixel3)] == 2
            assert in_mask[tuple(fg_biased)] > 0 or not coin_flip

            for d in range(ndim):
                assert 0 <= anchor[d] and anchor[d] + crop_shape[d] <= in_mask.shape[d]
            assert out_mask.shape == tuple(crop_shape)
Пример #20
0
def check_pad_to_square(device='cpu', batch_size=3, ndim=2, num_iter=3):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=3,
                    device_id=0,
                    seed=1234)
    axes = (0, 1)
    with pipe:
        in_shape = fn.cast(fn.random.uniform(range=(10, 20), shape=(ndim, )),
                           dtype=types.INT32)
        in_data = fn.reshape(fn.random.uniform(range=(0., 1.), shape=in_shape),
                             layout="HW")
        shape = fn.shapes(in_data, dtype=types.INT32)
        h = fn.slice(shape, 0, 1, axes=[0])
        w = fn.slice(shape, 1, 1, axes=[0])
        side = math.max(h, w)
        if device == 'gpu':
            in_data = in_data.gpu()
        out_data = fn.pad(in_data,
                          axis_names="HW",
                          shape=fn.cat(side, side, axis=0))
        pipe.set_outputs(in_data, out_data)
    pipe.build()
    for _ in range(num_iter):
        outs = [
            out.as_cpu() if isinstance(out, TensorListGPU) else out
            for out in pipe.run()
        ]
        for i in range(batch_size):
            in_data, out_data = \
                [outs[out_idx].at(i) for out_idx in range(len(outs))]
            in_shape = in_data.shape
            max_side = max(in_shape)
            for s in out_data.shape:
                assert s == max_side
            np.testing.assert_equal(out_data[:in_shape[0], :in_shape[1]],
                                    in_data)
            np.testing.assert_equal(out_data[in_shape[0]:, :], 0)
            np.testing.assert_equal(out_data[:, in_shape[1]:], 0)
Пример #21
0
 def make_pipe():
     fake_data = fn.constant(idata=0,
                             shape=[10, 10, 3],
                             dtype=types.FLOAT,
                             device="cpu")
     rel_start = fn.random.uniform(range=[0.0, 0.3],
                                   shape=(2, ),
                                   dtype=types.FLOAT,
                                   device="gpu")
     rel_shape = fn.random.uniform(range=[0.4, 0.6],
                                   shape=(2, ),
                                   dtype=types.FLOAT,
                                   device="gpu")
     sliced = fn.slice(fake_data, rel_start, rel_shape, device="cpu")
     return sliced
Пример #22
0
def create_dali_pipe(channel_first, seq_len, interp, dtype, w, h, batch_size=2):
    pipe = dali.pipeline.Pipeline(batch_size, 1, 0, 0)
    with pipe:
        layout = "FCHW" if channel_first else "FHWC"
        ext = fn.external_source(GetSequences(channel_first, seq_len, batch_size), layout=layout)
        resize_cpu_out = fn.resize(ext, resize_x=w, resize_y=h, interp_type=interp,
                                   dtype=dtype, save_attrs=True)
        resize_gpu_out = fn.resize(ext.gpu(), resize_x=w, resize_y=h, interp_type=interp,
                                   minibatch_size=4, dtype=dtype, save_attrs=True)
        dali_resized_cpu, size_cpu = resize_cpu_out
        dali_resized_gpu, size_gpu = resize_gpu_out
        # extract just HW part from the input shape
        ext_size = fn.slice(fn.cast(fn.shapes(ext), dtype=types.INT32),
                            2 if channel_first else 1, 2, axes=[0])
        pipe.set_outputs(dali_resized_cpu, dali_resized_gpu, ext_size, size_cpu, size_gpu)
    return pipe
Пример #23
0
def numpy_reader_roi_pipe(file_root,
                          device="cpu",
                          file_filter='*.npy',
                          roi_start=None,
                          rel_roi_start=None,
                          roi_end=None,
                          rel_roi_end=None,
                          roi_shape=None,
                          rel_roi_shape=None,
                          roi_axes=None,
                          default_axes=[],
                          out_of_bounds_policy=None,
                          fill_value=None):
    data = fn.readers.numpy(device=device,
                            file_root=file_root,
                            file_filter=file_filter,
                            shard_id=0,
                            num_shards=1,
                            cache_header_information=False)
    roi_data = fn.readers.numpy(device=device,
                                file_root=file_root,
                                file_filter=file_filter,
                                roi_start=roi_start,
                                rel_roi_start=rel_roi_start,
                                roi_end=roi_end,
                                rel_roi_end=rel_roi_end,
                                roi_shape=roi_shape,
                                rel_roi_shape=rel_roi_shape,
                                roi_axes=roi_axes,
                                out_of_bounds_policy=out_of_bounds_policy,
                                fill_value=fill_value,
                                shard_id=0,
                                num_shards=1,
                                cache_header_information=False)
    sliced_data = fn.slice(
        data,
        start=roi_start,
        rel_start=rel_roi_start,
        end=roi_end,
        rel_end=rel_roi_end,
        shape=roi_shape,
        rel_shape=rel_roi_shape,
        axes=roi_axes
        or default_axes,  # Slice has different default (axis_names="WH")
        out_of_bounds_policy=out_of_bounds_policy,
        fill_values=fill_value)
    return roi_data, sliced_data
Пример #24
0
def _test_empty_input(dim, device):
    batch_size = 8
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=8,
                    device_id=0,
                    seed=1234)
    if dim == 2:
        files, labels = dali.fn.readers.caffe(path=db_2d_folder,
                                              random_shuffle=True)
        images_cpu = dali.fn.decoders.image(files, device="cpu")
    else:
        images_cpu = dali.fn.external_source(
            source=random_3d_loader(batch_size), layout="DHWC")

    images = images_cpu if device == "cpu" else images_cpu.gpu()

    in_rel_shapes = np.ones([batch_size, dim], dtype=np.float32)

    in_rel_shapes[::2, :] *= 0  # all zeros in every second sample

    degenerate_images = fn.slice(images,
                                 np.zeros([dim]),
                                 fn.external_source(lambda: in_rel_shapes),
                                 axes=list(range(dim)))

    sizes = np.random.randint(20, 50, [batch_size, dim], dtype=np.int32)
    size_inp = fn.external_source(
        lambda: [x.astype(np.float32) for x in sizes])

    resize_no_empty = fn.resize(images, size=size_inp, mode="not_larger")
    resize_with_empty = fn.resize(degenerate_images,
                                  size=size_inp,
                                  mode="not_larger")

    pipe.set_outputs(resize_no_empty, resize_with_empty)
    pipe.build()

    for it in range(3):
        out_no_empty, out_with_empty = pipe.run()
        if device == "gpu":
            out_no_empty = out_no_empty.as_cpu()
            out_with_empty = out_with_empty.as_cpu()
        for i in range(batch_size):
            if i % 2 != 0:
                assert np.array_equal(out_no_empty.at(i), out_with_empty.at(i))
            else:
                assert np.prod(out_with_empty.at(i).shape) == 0
Пример #25
0
def check_slice_named_args(device, batch_size):
    test_data_shape = [5, 4, 3]
    def get_data():
        out = [np.random.randint(0, 255, size = test_data_shape, dtype = np.uint8) for _ in range(batch_size)]
        return out
    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=0)
    with pipe:
        data = fn.external_source(source = get_data, layout = "HWC")
        in_shape_list = [5, 4]
        start_list = [1, 2]
        shape_list = [3, 1]
        in_shape = np.array(in_shape_list)
        start = np.array(start_list)
        shape = np.array(shape_list)
        end_list = [start_list[i] + shape_list[i] for i in range(2)]
        end = start + shape
        rel_start_list = [start_list[i] / in_shape_list[i] for i in range(2)]
        rel_start = start / in_shape
        rel_shape_list = [shape_list[i] / in_shape_list[i] for i in range(2)]
        rel_shape = shape / in_shape
        rel_end_list = [end_list[i] / in_shape_list[i] for i in range(2)]
        rel_end = end / in_shape

        outs = [
            fn.slice(data, start, shape, axes = (0, 1)),
            fn.slice(data, rel_start, rel_shape, axes = (0, 1)),
        ]

        for start_arg in [start, start_list]:
            for shape_arg in [shape, shape_list]:
                outs += [fn.slice(data, start=start_arg, shape=shape_arg, axes = (0, 1))]
            for end_arg in [end, end_list]:
                outs += [fn.slice(data, start=start_arg, end=end_arg, axes = (0, 1))]
        for rel_start_arg in [rel_start, rel_start_list]:
            for rel_shape_arg in [rel_shape, rel_shape_list]:
                outs += [fn.slice(data, rel_start=rel_start_arg, rel_shape=rel_shape_arg, axes = (0, 1))]
            for rel_end_arg in [rel_end, rel_end_list]:
                outs += [fn.slice(data, rel_start=rel_start_arg, rel_end=rel_end_arg, axes = (0, 1))]
            for shape_arg in [shape, shape_list]:
                outs += [fn.slice(data, rel_start=rel_start_arg, shape=shape_arg, axes = (0, 1))]
        pipe.set_outputs(*outs)
    pipe.build()
    for _ in range(3):
        outs = pipe.run()
        for out_idx in range(1, len(outs)):
            for sample in range(batch_size):
                np.testing.assert_equal(np.array(outs[0][sample]), np.array(outs[out_idx][sample]))
Пример #26
0
def create_dali_pipe(channel_first,
                     seq_len,
                     interp,
                     dtype,
                     w,
                     h,
                     batch_size=2):
    pipe = dali.pipeline.Pipeline(batch_size, 1, 0, 0)
    with pipe:
        layout = "FCHW" if channel_first else "FHWC"
        ext = fn.external_source(GetSequences(channel_first, seq_len,
                                              batch_size),
                                 layout=layout)
        resize_cpu_out = fn.resize(ext,
                                   resize_x=w,
                                   resize_y=h,
                                   interp_type=interp,
                                   dtype=dtype,
                                   save_attrs=True)
        resize_gpu_out = fn.resize(ext.gpu(),
                                   resize_x=w,
                                   resize_y=h,
                                   interp_type=interp,
                                   minibatch_size=4,
                                   dtype=dtype,
                                   save_attrs=True)
        dali_resized_cpu, size_cpu = resize_cpu_out
        dali_resized_gpu, size_gpu = resize_gpu_out
        # extract just HW part from the input shape
        shape_anchor = np.array([2 if channel_first else 1], dtype=np.float32)
        shape_shape = np.array([2], dtype=np.float32)
        ext_size = fn.slice(fn.cast(fn.shapes(ext), dtype=types.INT32),
                            types.Constant(shape_anchor, device="cpu"),
                            types.Constant(shape_shape, device="cpu"),
                            normalized_anchor=False,
                            normalized_shape=False,
                            axes=[0])
        pipe.set_outputs(dali_resized_cpu, dali_resized_gpu, ext_size,
                         size_cpu, size_gpu)
    return pipe
Пример #27
0
def dali_frame_splicing_graph(x, nfeatures, x_len, stacking=1, subsampling=1):
    if stacking > 1:
        seq = [x]
        for n in range(1, stacking):
            f = fn.slice(x,
                         n,
                         x_len,
                         axes=(1, ),
                         out_of_bounds_policy='pad',
                         fill_values=0)
            seq.append(f)
        x = fn.cat(*seq, axis=0)
        nfeatures = nfeatures * stacking
    if subsampling > 1:
        out_len = (x_len + subsampling - 1) // subsampling
        m = fn.transforms.scale(scale=[subsampling, 1], center=[0.5, 0])
        x = fn.reshape(x, rel_shape=[1, 1, -1],
                       layout="HWC")  # Layout required by WarpAffine
        size = fn.cat(nfeatures, out_len)
        x = fn.warp_affine(x, matrix=m, size=size, interp_type=types.INTERP_NN)
        x = fn.reshape(x, rel_shape=[1, 1], layout="ft")
    return x
Пример #28
0
def test_slice_cpu():
    anch_shape = [2]

    def get_anchors():
        out = [(np.random.randint(1, 256, size=anch_shape, dtype=np.uint8) /
                255).astype(dtype=np.float32) for _ in range(batch_size)]
        return out

    def get_shape():
        out = [(np.random.randint(1, 256, size=anch_shape, dtype=np.uint8) /
                255).astype(dtype=np.float32) for _ in range(batch_size)]
        return out

    pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=None)
    data = fn.external_source(source=get_data, layout="HWC")
    anchors = fn.external_source(source=get_anchors)
    shape = fn.external_source(source=get_shape)
    processed = fn.slice(data, anchors, shape, out_of_bounds_policy="pad")
    pipe.set_outputs(processed)
    pipe.build()
    for _ in range(3):
        pipe.run()
Пример #29
0
def rnnt_train_pipe(files,
                    sample_rate,
                    pad_amount=0,
                    preemph_coeff=.97,
                    window_size=.02,
                    window_stride=.01,
                    window="hann",
                    nfeatures=64,
                    nfft=512,
                    frame_splicing_stack=1,
                    frame_splicing_subsample=1,
                    lowfreq=0.0,
                    highfreq=None,
                    normalize_type='per_feature',
                    speed_perturb=False,
                    silence_trim=False,
                    device='cpu'):
    assert normalize_type == 'per_feature' or normalize_type == 'all_features'
    norm_axes = [1] if normalize_type == 'per_feature' else [0, 1]
    win_len, win_hop = win_args(sample_rate, window_size, window_stride)
    window_fn = torch_windows.get(window, None)
    window_fn_arg = window_fn(
        win_len, periodic=False).numpy().tolist() if window_fn else None

    data, _ = fn.readers.file(files=files,
                              device="cpu",
                              random_shuffle=False,
                              shard_id=0,
                              num_shards=1)
    audio, _ = fn.decoders.audio(data, dtype=types.FLOAT, downmix=True)

    # splicing with subsampling doesn't work if audio_len is a GPU data node
    if device == 'gpu' and frame_splicing_subsample == 1:
        audio = audio.gpu()

    # Speed perturbation 0.85x - 1.15x
    if speed_perturb:
        target_sr_factor = fn.random.uniform(device="cpu",
                                             range=(1 / 1.15, 1 / 0.85))
        audio = fn.experimental.audio_resample(audio, scale=target_sr_factor)

    # Silence trimming
    if silence_trim:
        begin, length = fn.nonsilent_region(audio, cutoff_db=-80)
        audio = fn.slice(audio, begin, length, axes=[0])

    audio_shape = fn.shapes(audio, dtype=types.INT32)
    orig_audio_len = fn.slice(audio_shape, 0, 1, axes=(0, ))

    # If we couldn't move to GPU earlier, do it now
    if device == 'gpu' and frame_splicing_subsample > 1:
        audio = audio.gpu()

    if pad_amount > 0:
        audio_len = orig_audio_len + 2 * pad_amount
        padded_audio = dali_reflect_pad_graph(audio, orig_audio_len,
                                              pad_amount)
    else:
        audio_len = orig_audio_len
        padded_audio = audio

    # Preemphasis filter
    preemph_audio = fn.preemphasis_filter(padded_audio,
                                          preemph_coeff=preemph_coeff,
                                          border='zero')

    # Spectrogram
    spec_len = audio_len // win_hop + 1
    spec = fn.spectrogram(preemph_audio,
                          nfft=nfft,
                          window_fn=window_fn_arg,
                          window_length=win_len,
                          window_step=win_hop,
                          center_windows=True,
                          reflect_padding=True)
    # Mel spectrogram
    mel_spec = fn.mel_filter_bank(spec,
                                  sample_rate=sample_rate,
                                  nfilter=nfeatures,
                                  freq_low=lowfreq,
                                  freq_high=highfreq)

    # Log
    log_features = fn.to_decibels(mel_spec + 1e-20,
                                  multiplier=np.log(10),
                                  reference=1.0,
                                  cutoff_db=-80)

    # Frame splicing
    if frame_splicing_stack > 1 or frame_splicing_subsample > 1:
        log_features_spliced = dali_frame_splicing_graph(
            log_features,
            nfeatures,
            spec_len,
            stacking=frame_splicing_stack,
            subsampling=frame_splicing_subsample)
    else:
        log_features_spliced = log_features

    # Normalization
    if normalize_type:
        norm_log_features = fn.normalize(log_features_spliced,
                                         axes=norm_axes,
                                         device=device,
                                         epsilon=4e-5,
                                         ddof=1)
    else:
        norm_log_features = log_features_spliced

    return norm_log_features, log_features_spliced, log_features, mel_spec, spec, preemph_audio, padded_audio, audio
def check_bbox_random_crop_adjust_polygons(file_root,
                                           annotations_file,
                                           batch_size=3,
                                           num_iters=4,
                                           num_threads=4,
                                           device_id=0,
                                           seed=1234):
    pipe = Pipeline(batch_size=batch_size,
                    num_threads=num_threads,
                    device_id=device_id,
                    seed=seed)
    with pipe:
        # Read data from COCO
        # ratio=True means both bboxes and masks coordinates will be
        # relative to the image dimensions (range [0.0, 1.0])
        inputs, in_bboxes, labels, in_polygons, in_vertices = \
            fn.readers.coco(
                file_root=file_root, annotations_file=annotations_file, shard_id=0, num_shards=1,
                ratio=True, ltrb=True, polygon_masks=True
            )

        # Generate a random crop. out_bboxes are adjusted to the crop window
        slice_anchor, slice_shape, out_bboxes, labels, bbox_indices = \
            fn.random_bbox_crop(
                in_bboxes, labels,
                aspect_ratio=[0.5, 2.0], thresholds=[0, 0.1, 0.3, 0.5, 0.7, 0.9],
                scaling=[0.3, 1.0], bbox_layout='xyXY', output_bbox_indices=True
            )
        # Crop the image
        _ = fn.decoders.image_slice(inputs,
                                    slice_anchor,
                                    slice_shape,
                                    device='mixed',
                                    axis_names='WH')

        sel_polygons, sel_vertices = fn.segmentation.select_masks(
            bbox_indices, in_polygons, in_vertices)

        # Adjust masks coordinates to the coordinate space of the cropped image
        MT = fn.transforms.crop(from_start=slice_anchor,
                                from_end=(slice_anchor + slice_shape))
        out_vertices = fn.coord_transform(sel_vertices, MT=MT)

        # Converting to absolute coordinates (demo purposes)
        image_shape = fn.peek_image_shape(inputs, dtype=types.FLOAT)
        h = fn.slice(image_shape, 0, 1, axes=[0])
        w = fn.slice(image_shape, 1, 1, axes=[0])

        # Original bboxes
        bbox_x = fn.slice(in_bboxes, 0, 1, axes=[1])
        bbox_y = fn.slice(in_bboxes, 1, 1, axes=[1])
        bbox_X = fn.slice(in_bboxes, 2, 1, axes=[1])
        bbox_Y = fn.slice(in_bboxes, 3, 1, axes=[1])
        in_bboxes_abs = fn.cat(bbox_x * w,
                               bbox_y * h,
                               bbox_X * w,
                               bbox_Y * h,
                               axis=1)

        # Transform to convert relative coordinates to absolute
        scale_rel_to_abs = fn.transforms.scale(scale=fn.cat(w, h))

        # Selected vertices (relative coordinates)
        sel_vertices_abs = fn.coord_transform(out_vertices,
                                              MT=scale_rel_to_abs)

        # Output bboxes
        bbox2_x = fn.slice(out_bboxes, 0, 1, axes=[1])
        bbox2_y = fn.slice(out_bboxes, 1, 1, axes=[1])
        bbox2_X = fn.slice(out_bboxes, 2, 1, axes=[1])
        bbox2_Y = fn.slice(out_bboxes, 3, 1, axes=[1])
        out_bboxes_abs = fn.cat(bbox2_x * w,
                                bbox2_y * h,
                                bbox2_X * w,
                                bbox2_Y * h,
                                axis=1)

        # Output vertices (absolute coordinates)
        out_vertices_abs = fn.coord_transform(out_vertices,
                                              MT=scale_rel_to_abs)

        # Clamped coordinates
        out_vertices_clamped = math.clamp(out_vertices, 0.0, 1.0)
        out_vertices_clamped_abs = fn.coord_transform(out_vertices_clamped,
                                                      MT=scale_rel_to_abs)

    pipe.set_outputs(in_vertices, sel_vertices, sel_vertices_abs, out_vertices,
                     out_vertices_clamped, out_vertices_abs,
                     out_vertices_clamped_abs, in_bboxes, in_bboxes_abs,
                     out_bboxes, out_bboxes_abs, in_polygons, sel_polygons,
                     image_shape, slice_anchor, slice_shape, bbox_indices)
    pipe.build()
    # Enough iterations to see an example with more than one bounding box
    for i in range(num_iters):
        outs = pipe.run()
        for j in range(batch_size):
            (in_vertices, sel_vertices, sel_vertices_abs, out_vertices,
             out_vertices_clamped, out_vertices_abs, out_vertices_clamped_abs,
             in_bboxes, in_bboxes_abs, out_bboxes, out_bboxes_abs, in_polygons,
             sel_polygons, image_shape, slice_anchor, slice_shape,
             bbox_indices) = (outs[k].at(j) for k in range(len(outs)))

            # Checking that the output polygon descriptors are the ones associated with the
            # selected bounding boxes
            expected_polygons_list = []
            expected_vertices_list = []
            ver_count = 0
            for k in range(in_polygons.shape[0]):
                mask_id = in_polygons[k][0]
                in_ver_start_idx = in_polygons[k][1]
                in_ver_end_idx = in_polygons[k][2]
                pol_nver = in_ver_end_idx - in_ver_start_idx
                if mask_id in bbox_indices:
                    expected_polygons_list.append(
                        [mask_id, ver_count, ver_count + pol_nver])
                    for j in range(in_ver_start_idx, in_ver_end_idx):
                        expected_vertices_list.append(in_vertices[j])
                    ver_count = ver_count + pol_nver
            expected_sel_polygons = np.array(expected_polygons_list)
            np.testing.assert_equal(expected_sel_polygons, sel_polygons)

            # Checking the selected vertices correspond to the selected masks
            expected_sel_vertices = np.array(expected_vertices_list)
            np.testing.assert_equal(expected_sel_vertices, sel_vertices)

            # Chekc that the vertices are correctly mapped to the cropping window
            expected_out_vertices = np.copy(expected_sel_vertices)
            crop_x, crop_y = slice_anchor
            crop_w, crop_h = slice_shape
            for v in range(expected_out_vertices.shape[0]):
                expected_out_vertices[v, 0] = (expected_out_vertices[v, 0] -
                                               crop_x) / crop_w
                expected_out_vertices[v, 1] = (expected_out_vertices[v, 1] -
                                               crop_y) / crop_h
            np.testing.assert_allclose(expected_out_vertices,
                                       out_vertices,
                                       rtol=1e-4)

            # Checking the conversion to absolute coordinates
            h, w, _ = image_shape
            wh = np.array([w, h])
            whwh = np.array([w, h, w, h])
            expected_out_vertices_abs = expected_out_vertices * wh
            np.testing.assert_allclose(expected_out_vertices_abs,
                                       out_vertices_abs,
                                       rtol=1e-4)

            # Checking clamping of the relative coordinates
            expected_out_vertices_clamped = np.clip(expected_out_vertices,
                                                    a_min=0.0,
                                                    a_max=1.0)
            np.testing.assert_allclose(expected_out_vertices_clamped,
                                       out_vertices_clamped,
                                       rtol=1e-4)

            # Checking clamping of the absolute coordinates
            expected_out_vertices_clamped_abs = np.clip(
                expected_out_vertices_abs, 0, wh)
            np.testing.assert_allclose(expected_out_vertices_clamped_abs,
                                       out_vertices_clamped_abs,
                                       rtol=1e-4)

            # Checking scaling of the bounding boxes
            expected_in_bboxes_abs = in_bboxes * whwh
            np.testing.assert_allclose(expected_in_bboxes_abs,
                                       in_bboxes_abs,
                                       rtol=1e-4)

            # Check box selection and mapping to the cropping window
            expected_out_bboxes = np.copy(in_bboxes[bbox_indices, :])
            for k in range(expected_out_bboxes.shape[0]):
                expected_out_bboxes[k, 0] = (expected_out_bboxes[k, 0] -
                                             crop_x) / crop_w
                expected_out_bboxes[k, 1] = (expected_out_bboxes[k, 1] -
                                             crop_y) / crop_h
                expected_out_bboxes[k, 2] = (expected_out_bboxes[k, 2] -
                                             crop_x) / crop_w
                expected_out_bboxes[k, 3] = (expected_out_bboxes[k, 3] -
                                             crop_y) / crop_h
            expected_out_bboxes = np.clip(expected_out_bboxes,
                                          a_min=0.0,
                                          a_max=1.0)
            np.testing.assert_allclose(expected_out_bboxes,
                                       out_bboxes,
                                       rtol=1e-4)

            expected_out_bboxes_abs = expected_out_bboxes * whwh
            np.testing.assert_allclose(expected_out_bboxes_abs,
                                       out_bboxes_abs,
                                       rtol=1e-4)