Пример #1
0
    def __init__(self, batch_size, num_threads, path, training, annotations, world, device_id, mean, std, resize,
                 max_size, stride, rotate_augment=False,
                 augment_brightness=0.0,
                 augment_contrast=0.0, augment_hue=0.0,
                 augment_saturation=0.0):
        super().__init__(batch_size=batch_size, num_threads=num_threads, device_id=device_id,
                         prefetch_queue_depth=num_threads, seed=42)
        self.path = path
        self.training = training
        self.stride = stride
        self.iter = 0

        self.rotate_augment = rotate_augment
        self.augment_brightness = augment_brightness
        self.augment_contrast = augment_contrast
        self.augment_hue = augment_hue
        self.augment_saturation = augment_saturation

        self.reader = ops.COCOReader(annotations_file=annotations, file_root=path, num_shards=world,
                                     shard_id=torch.cuda.current_device(),
                                     ltrb=True, ratio=True, shuffle_after_epoch=True, save_img_ids=True)

        self.decode_train = ops.ImageDecoderSlice(device="mixed", output_type=types.RGB)
        self.decode_infer = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.bbox_crop = ops.RandomBBoxCrop(device='cpu', ltrb=True, scaling=[0.3, 1.0],
                                            thresholds=[0.1, 0.3, 0.5, 0.7, 0.9])

        self.bbox_flip = ops.BbFlip(device='cpu', ltrb=True)
        self.img_flip = ops.Flip(device='gpu')
        self.coin_flip = ops.CoinFlip(probability=0.5)
        self.bc = ops.BrightnessContrast(device='gpu')
        self.hsv = ops.Hsv(device='gpu')

        # Random number generation for augmentation
        self.brightness_dist = ops.NormalDistribution(mean=1.0, stddev=augment_brightness)
        self.contrast_dist = ops.NormalDistribution(mean=1.0, stddev=augment_contrast)
        self.hue_dist = ops.NormalDistribution(mean=0.0, stddev=augment_hue)
        self.saturation_dist = ops.NormalDistribution(mean=1.0, stddev=augment_saturation)

        if rotate_augment:
            raise RuntimeWarning("--augment-rotate current has no effect when using the DALI data loader.")

        if isinstance(resize, list): resize = max(resize)
        self.rand_resize = ops.Uniform(range=[resize, float(max_size)])

        self.resize_train = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC, save_attrs=True)
        self.resize_infer = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC,
                                       resize_longer=max_size, save_attrs=True)

        padded_size = max_size + ((self.stride - max_size % self.stride) % self.stride)

        self.pad = ops.Paste(device='gpu', fill_value=0, ratio=1.1, min_canvas_size=padded_size, paste_x=0, paste_y=0)
        self.normalize = ops.CropMirrorNormalize(device='gpu', mean=mean, std=std, crop=(padded_size, padded_size),
                                                 crop_pos_x=0, crop_pos_y=0)
Пример #2
0
    def __init__(self,
                 device_id,
                 n_devices,
                 file_root,
                 file_list,
                 batch_size,
                 sample_rate=16000,
                 window_size=.02,
                 window_stride=.01,
                 nfeatures=64,
                 nfft=512,
                 frame_splicing_factor=3,
                 silence_threshold=-80,
                 dither=.00001,
                 preemph_coeff=.97,
                 lowfreq=0.0,
                 highfreq=0.0,
                 num_threads=1):
        super().__init__(batch_size, num_threads, device_id, seed=42)

        self.dither = dither
        self.frame_splicing_factor = frame_splicing_factor

        self.read = ops.FileReader(file_root=file_root,
                                   file_list=file_list,
                                   device="cpu",
                                   shard_id=device_id,
                                   num_shards=n_devices)

        self.decode = ops.AudioDecoder(device="cpu",
                                       dtype=types.FLOAT,
                                       downmix=True)

        self.normal_distribution = ops.NormalDistribution(device="cpu")

        self.preemph = ops.PreemphasisFilter(preemph_coeff=preemph_coeff)

        self.spectrogram = ops.Spectrogram(
            device="cpu",
            nfft=nfft,
            window_length=window_size * sample_rate,
            window_step=window_stride * sample_rate)

        self.mel_fbank = ops.MelFilterBank(device="cpu",
                                           sample_rate=sample_rate,
                                           nfilter=nfeatures,
                                           normalize=True,
                                           freq_low=lowfreq,
                                           freq_high=highfreq)

        self.log_features = ops.ToDecibels(device="cpu",
                                           multiplier=np.log(10),
                                           reference=1.0,
                                           cutoff_db=-80)

        self.get_shape = ops.Shapes(device="cpu")

        self.normalize = ops.Normalize(axes=[0], device="cpu")

        self.splicing_transpose = ops.Transpose(device="cpu", perm=[1, 0])
        self.splicing_reshape = ops.Reshape(
            device="cpu", rel_shape=[-1, frame_splicing_factor])
        self.splicing_pad = ops.Pad(axes=[0],
                                    fill_value=0,
                                    align=frame_splicing_factor,
                                    shape=[1],
                                    device="cpu")

        self.get_nonsilent_region = ops.NonsilentRegion(
            device="cpu", cutoff_db=silence_threshold)
        self.trim_silence = ops.Slice(device="cpu", axes=[0])
        self.to_float = ops.Cast(dtype=types.FLOAT)
Пример #3
0
    def __init__(
            self,
            *,
            train_pipeline:
        bool,  # True if train pipeline, False if validation pipeline
            device_id,
            num_threads,
            batch_size,
            file_root: str,
            file_list: str,
            sample_rate,
            discrete_resample_range: bool,
            resample_range: list,
            window_size,
            window_stride,
            nfeatures,
            nfft,
            frame_splicing_factor,
            dither_coeff,
            silence_threshold,
            preemph_coeff,
            pad_align,
            max_duration,
            mask_time_num_regions,
            mask_time_min,
            mask_time_max,
            mask_freq_num_regions,
            mask_freq_min,
            mask_freq_max,
            mask_both_num_regions,
            mask_both_min_time,
            mask_both_max_time,
            mask_both_min_freq,
            mask_both_max_freq,
            preprocessing_device="gpu"):
        super().__init__(batch_size, num_threads, device_id)

        self._dali_init_log(locals())

        if torch.distributed.is_initialized():
            shard_id = torch.distributed.get_rank()
            n_shards = torch.distributed.get_world_size()
        else:
            shard_id = 0
            n_shards = 1

        self.preprocessing_device = preprocessing_device.lower()
        assert self.preprocessing_device == "cpu" or self.preprocessing_device == "gpu", \
            "Incorrect preprocessing device. Please choose either 'cpu' or 'gpu'"
        self.frame_splicing_factor = frame_splicing_factor
        assert frame_splicing_factor == 1, "DALI doesn't support frame splicing operation"

        self.resample_range = resample_range
        self.discrete_resample_range = discrete_resample_range

        self.train = train_pipeline
        self.sample_rate = sample_rate
        self.dither_coeff = dither_coeff
        self.nfeatures = nfeatures
        self.max_duration = max_duration
        self.mask_params = {
            'time_num_regions': mask_time_num_regions,
            'time_min': mask_time_min,
            'time_max': mask_time_max,
            'freq_num_regions': mask_freq_num_regions,
            'freq_min': mask_freq_min,
            'freq_max': mask_freq_max,
            'both_num_regions': mask_both_num_regions,
            'both_min_time': mask_both_min_time,
            'both_max_time': mask_both_max_time,
            'both_min_freq': mask_both_min_freq,
            'both_max_freq': mask_both_max_freq,
        }
        self.do_remove_silence = True if silence_threshold is not None else False

        self.read = ops.FileReader(device="cpu",
                                   file_root=file_root,
                                   file_list=file_list,
                                   shard_id=shard_id,
                                   num_shards=n_shards,
                                   shuffle_after_epoch=train_pipeline)

        # TODO change ExternalSource to Uniform for new DALI release
        if discrete_resample_range and resample_range is not None:
            self.speed_perturbation_coeffs = ops.ExternalSource(
                device="cpu",
                cycle=True,
                source=self._discrete_resample_coeffs_generator)
        elif resample_range is not None:
            self.speed_perturbation_coeffs = ops.Uniform(device="cpu",
                                                         range=resample_range)
        else:
            self.speed_perturbation_coeffs = None

        self.decode = ops.AudioDecoder(
            device="cpu",
            sample_rate=self.sample_rate if resample_range is None else None,
            dtype=types.FLOAT,
            downmix=True)

        self.normal_distribution = ops.NormalDistribution(
            device=preprocessing_device)

        self.preemph = ops.PreemphasisFilter(device=preprocessing_device,
                                             preemph_coeff=preemph_coeff)

        self.spectrogram = ops.Spectrogram(
            device=preprocessing_device,
            nfft=nfft,
            window_length=window_size * sample_rate,
            window_step=window_stride * sample_rate)

        self.mel_fbank = ops.MelFilterBank(device=preprocessing_device,
                                           sample_rate=sample_rate,
                                           nfilter=self.nfeatures,
                                           normalize=True)

        self.log_features = ops.ToDecibels(device=preprocessing_device,
                                           multiplier=np.log(10),
                                           reference=1.0,
                                           cutoff_db=math.log(1e-20))

        self.get_shape = ops.Shapes(device=preprocessing_device)

        self.normalize = ops.Normalize(device=preprocessing_device, axes=[1])

        self.pad = ops.Pad(device=preprocessing_device,
                           axes=[1],
                           fill_value=0,
                           align=pad_align)

        # Silence trimming
        self.get_nonsilent_region = ops.NonsilentRegion(
            device="cpu", cutoff_db=silence_threshold)
        self.trim_silence = ops.Slice(device="cpu",
                                      normalized_anchor=False,
                                      normalized_shape=False,
                                      axes=[0])
        self.to_float = ops.Cast(device="cpu", dtype=types.FLOAT)

        # Spectrogram masking
        self.spectrogram_cutouts = ops.ExternalSource(
            source=self._cutouts_generator, num_outputs=2, cycle=True)
        self.mask_spectrogram = ops.Erase(device=preprocessing_device,
                                          axes=[0, 1],
                                          fill_value=0,
                                          normalized_anchor=True)
 def __init__(self, batch_size, dtype):
     super(NormalDistributionPipelineDefault, self).__init__(batch_size)
     self.norm = ops.NormalDistribution(device="cpu", dtype=dtype)
 def __init__(self, shape, dtype):
     super(NormalDistributionPipelineWithArgument, self).__init__(1)
     self.norm = ops.NormalDistribution(device="cpu",
                                        shape=shape,
                                        dtype=dtype)
 def __init__(self, premade_batch, dtype):
     super(NormalDistributionPipelineWithInput,
           self).__init__(len(premade_batch))
     self.premade_batch = premade_batch
     self.ext_src = ops.ExternalSource()
     self.norm = ops.NormalDistribution(device="cpu", dtype=dtype)
Пример #7
0
    def __init__(self,
                 *,
                 pipeline_type,
                 device_id,
                 num_threads,
                 batch_size,
                 file_root: str,
                 sampler,
                 sample_rate,
                 resample_range: list,
                 window_size,
                 window_stride,
                 nfeatures,
                 nfft,
                 dither_coeff,
                 silence_threshold,
                 preemph_coeff,
                 max_duration,
                 preprocessing_device="gpu"):
        super().__init__(batch_size, num_threads, device_id)

        self._dali_init_log(locals())

        if torch.distributed.is_initialized():
            shard_id = torch.distributed.get_rank()
            n_shards = torch.distributed.get_world_size()
        else:
            shard_id = 0
            n_shards = 1

        self.preprocessing_device = preprocessing_device.lower()
        assert self.preprocessing_device == "cpu" or self.preprocessing_device == "gpu", \
            "Incorrect preprocessing device. Please choose either 'cpu' or 'gpu'"

        self.resample_range = resample_range

        train_pipeline = pipeline_type == 'train'
        self.train = train_pipeline
        self.sample_rate = sample_rate
        self.dither_coeff = dither_coeff
        self.nfeatures = nfeatures
        self.max_duration = max_duration
        self.do_remove_silence = True if silence_threshold is not None else False

        shuffle = train_pipeline and not sampler.is_sampler_random()
        self.read = ops.FileReader(name="Reader",
                                   pad_last_batch=(pipeline_type == 'val'),
                                   device="cpu",
                                   file_root=file_root,
                                   file_list=sampler.get_file_list_path(),
                                   shard_id=shard_id,
                                   num_shards=n_shards,
                                   shuffle_after_epoch=shuffle)

        # TODO change ExternalSource to Uniform for new DALI release
        if resample_range is not None:
            self.speed_perturbation_coeffs = ops.Uniform(device="cpu",
                                                         range=resample_range)
        else:
            self.speed_perturbation_coeffs = None

        self.decode = ops.AudioDecoder(
            device="cpu",
            sample_rate=self.sample_rate if resample_range is None else None,
            dtype=types.FLOAT,
            downmix=True)

        self.normal_distribution = ops.NormalDistribution(
            device=preprocessing_device)

        self.preemph = ops.PreemphasisFilter(device=preprocessing_device,
                                             preemph_coeff=preemph_coeff)

        self.spectrogram = ops.Spectrogram(
            device=preprocessing_device,
            nfft=nfft,
            window_length=window_size * sample_rate,
            window_step=window_stride * sample_rate)

        self.mel_fbank = ops.MelFilterBank(device=preprocessing_device,
                                           sample_rate=sample_rate,
                                           nfilter=self.nfeatures,
                                           normalize=True)

        self.log_features = ops.ToDecibels(device=preprocessing_device,
                                           multiplier=np.log(10),
                                           reference=1.0,
                                           cutoff_db=math.log(1e-20))

        self.get_shape = ops.Shapes(device=preprocessing_device)

        self.normalize = ops.Normalize(device=preprocessing_device, axes=[1])

        self.pad = ops.Pad(device=preprocessing_device, fill_value=0)

        # Silence trimming
        self.get_nonsilent_region = ops.NonsilentRegion(
            device="cpu", cutoff_db=silence_threshold)
        self.trim_silence = ops.Slice(device="cpu",
                                      normalized_anchor=False,
                                      normalized_shape=False,
                                      axes=[0])
        self.to_float = ops.Cast(device="cpu", dtype=types.FLOAT)