Пример #1
0
 def partition(self, src=0, src_k=30, trg_k=125, share_triplets=True):
     trg = 1 - src
     if share_triplets:
         trg_triplets = self.share_triplets(self.data.triples[src],
                                            self.data.triples[trg],
                                            self.train_set[src],
                                            self.train_map[src])
         src_triplets = self.share_triplets(self.data.triples[trg],
                                            self.data.triples[src],
                                            self.train_set[trg],
                                            self.train_map[trg])
     else:
         src_triplets, trg_triplets = reversed(self.data.triples)
     g0 = self.construct_graph(src_triplets, cnt_as_weight=True)
     print('construct src graph complete, total nodes={0}, total edges={1}'.
           format(len(g0.nodes), len(g0.edges)))
     mincut, src_nodes = nxmetis.partition(g0, src_k)
     print('src graph partition complete, mincut=', mincut)
     src_train, trg_train = self.subgraph_trainset(src_nodes, src)
     print('filter trainset complete')
     # g1 = self.construct_graph(trg_triplets, None, keep_inter_edges=True)
     g1 = self.construct_graph(trg_triplets,
                               trg_train,
                               keep_inter_edges=False)
     print('construct trg graph complete')
     mincut, trg_nodes = nxmetis.partition(g1, trg_k)
     print('trg graph partition complete, mincut=', mincut)
     return src_nodes, trg_nodes, src_train, self.subgraph_trainset(
         trg_nodes, trg, True)
Пример #2
0
def metis_partition_groups_seeds(G, maximum_seed_size):
    CC = [cc for cc in nx.connected_components(G)]
    GL = []
    for subV in CC:
        if len(subV) > maximum_seed_size:
            # use metis to split the graph
            subG = nx.subgraph( G, subV )
            nparts = int( len(subV)/maximum_seed_size + 1 )
            ( edgecuts, parts ) = nxmetis.partition( subG, nparts, edge_weight='weight' )
            
            # only add connected components
            for p in parts:
                pG = nx.subgraph( G, p )
                GL += [list(cc) for cc in nx.connected_components( pG )]
            
            # add to group list
            #GL += parts
        else:
            GL += [list(subV)]

    SL = []
    for p in GL:
        pG = nx.subgraph( G, p )
        SL += [nx.maximal_independent_set( pG )]

    return GL, SL
def run_metis_partitioning(graph, nparts, ubvec, tpwgts, node_weight,
                           edge_weight):
    # Format metis parameters
    if tpwgts != None:
        tpwgts = [[val] for val in tpwgts]
    ubvec = [ubvec]
    # Run metis
    logging.info(
        "Partitioning the graph using METIS (nparts=%s, ubvec=%s, tpwgts=%s, node_weight=%s, edge_weight=%s)",
        nparts, ubvec, tpwgts, node_weight, edge_weight)
    output = nxmetis.partition(graph,
                               nparts,
                               node_weight=node_weight,
                               edge_weight=edge_weight,
                               tpwgts=tpwgts,
                               ubvec=ubvec)
    objval = output[0]
    partitions = output[1]
    logging.info(
        "The graph was partitioned into %s partitions by METIS (objval=%s)",
        len(partitions), objval)
    # Create assignments
    assignments = {}
    for index, partition in enumerate(partitions):
        for node in partition:
            assignments[
                node] = index  # node IDs start at 0, partition IDs start at 0
    return assignments
Пример #4
0
 def graph_partition(communication_graph):
     partition = nxmetis.partition(communication_graph, 2, None, None,
                                   'weight', None, None, None, True)
     # LLP: checking if the partitions have the same size
     # if that is not the case, we move items from the biggest to the smallest until equilibrium is met
     if (len(partition[1][0]) != len(partition[1][1])):
         left_is_smallest = len(partition[1][0]) < len(
             partition[1][1])  # Gets who is the smallest one
         small, big = ((partition[1][1], partition[1][0]), (
             partition[1][0], partition[1][1]
         ))[left_is_smallest]  # calls the smallest as "small"
         while len(small) < len(big):
             small.append(big.pop(0))
     left_graph = nx.Graph()
     left_graph.add_nodes_from(partition[1][0])
     for u in partition[1][0]:
         for v in partition[1][0]:
             if task_graph.has_edge(u, v):
                 val = task_graph.get_edge_data(u, v)['weight']
                 left_graph.add_edge(u, v, weight=val)
     right_graph = nx.Graph()
     right_graph.add_nodes_from(partition[1][1])
     for u in partition[1][1]:
         for v in partition[1][1]:
             if task_graph.has_edge(u, v):
                 val = task_graph.get_edge_data(u, v)['weight']
                 right_graph.add_edge(u, v, weight=val)
     global len_graph_part
     len_graph_part = len(left_graph)
     return left_graph, right_graph
Пример #5
0
 def graph_node_partition(
         topology_graph):  #proper case, if our topo is a graph
     partition = nxmetis.partition(topology_graph, 2, None, None, None,
                                   None, None, None, True)
     # LLP: checking if the partitions have the same size
     # if that is not the case, we move items from the biggest to the smallest until equilibrium is met
     if (len(partition[1][0]) != len(partition[1][1])):
         left_is_smallest = len(partition[1][0]) < len(
             partition[1][1])  # Gets who is the smallest one
         small, big = ((partition[1][1], partition[1][0]), (
             partition[1][0], partition[1][1]
         ))[left_is_smallest]  # calls the smallest as "small"
         while len(small) < len(big):
             small.append(big.pop(0))
     left_graph = nx.Graph()
     left_graph.add_nodes_from(partition[1][0])
     for u in partition[1][0]:
         for v in partition[1][0]:
             if processor_graph.has_edge(u, v):
                 left_graph.add_edge(u, v)
     right_graph = nx.Graph()
     right_graph.add_nodes_from(partition[1][1])
     for u in partition[1][1]:
         for v in partition[1][1]:
             if processor_graph.has_edge(u, v):
                 right_graph.add_edge(u, v)
     return left_graph, right_graph
Пример #6
0
def solve(G, k, s, rowdy_groups, i):
    #TODO: Write this method as you like. We'd recommend changing the arguments here as well
    #precalculate rowdy groups
    #K = number of buses.
    #S = max bus size.

    #29's messed up
    if i == 29 or i == 1064:
        nodes = list(G.nodes())
        step = len(nodes) // k
        return [nodes[j:j + step] for j in range(0, len(nodes), step)]

    seedr = random.randint(0, 100000)
    buses = []
    options = nxmetis.MetisOptions(seed=seedr)
    vol, buses = nxmetis.partition(G, k, recursive=True, options=options)
    #adjust for < S
    if any([1 for bus in buses if len(bus) > s]):
        #readjust partition.
        print(s, k, [len(bus) for bus in buses])
        #O(N) algorithm to by-hand pick off and rebalance
        picks = []
        for j in range(len(buses)):
            if len(buses[j]) > s:
                picks.extend(buses[j][s:])
                buses[j] = buses[j][:s]
        for j in range(len(buses)):
            if len(buses[j]) < s:
                space = s - len(buses[j])
                buses[j].extend(picks[len(picks) - space:])
                picks = picks[:len(picks) - space]
        print(s, k, [len(bus) for bus in buses])
    return buses
Пример #7
0
    def partition_by_edge(self, src=0, k=30):
        g0 = self.construct_edge_graph(self.data.triples[src])
        trg = 1 - src
        print('construct src graph complete, total nodes={0}, total edges={1}'.
              format(len(g0.nodes), len(g0.edges)))
        mincut, src_edges = nxmetis.partition(g0, k)
        print('src graph partition complete, mincut=', mincut)

        pass
Пример #8
0
    def __call__(self, model, n_chips):
        block_map = dict(enumerate(model.blocks))

        block_rates = None
        if self.ensemble_rates is not None:
            block_rates = ensemble_to_block_rates(model, self.ensemble_rates)
            block_rates = {
                block: np.round(rate * self.rate_scale)
                for block, rate in block_rates.items()
            }

        block_conns = estimate_interblock_activity(block_map, block_rates=block_rates)

        # partition graph
        G = networkx.Graph()
        G.add_nodes_from(block_map.keys())

        edge_map = set()
        for i in block_map:
            for j, val in block_conns[i].items():
                if (i, j) in edge_map or (j, i) in edge_map:
                    continue

                val = val + block_conns[j].get(i, 0)
                G.add_edge(i, j, weight=int(round(val)))  # weights must be integers
                edge_map.add((i, j))
                edge_map.add((j, i))

        _, parts = nxmetis.partition(G, nparts=int(n_chips))

        for i, part in enumerate(parts):
            if len(part) > 128:
                raise ValueError(
                    f"Partition {i} has {len(part)} cores, "
                    "which exceeds the available 128 cores"
                )

        # --- create board
        board = Board()

        # add inputs to board
        for input in model.inputs:
            self.input_to_board(input, board)

        # blocks to chips
        for part in parts:
            chip = board.new_chip()
            for block_idx in part:
                block = block_map[block_idx]
                self.block_to_new_core(block, chip)

        # add probes
        board.probes.extend(model.probes)

        logger.info("METIS allocation across %d chips", board.n_chips)

        return board
Пример #9
0
def metis_partitions(graph, num_par, file_name, per):
    par_result = nxmetis.partition(graph, num_par)[1]
    name = '/'+file_name + str(num_par)+'_'+str(per)
    graph_name = '/'+file_name + str(num_par)+'_'+str(per)+'_graph'
    path = METIS_GRAPH_SAVE_PATH
    save_obj(par_result, name, path)
    #save_obj(graph, graph_name, path)

    return graph, par_result
def metis_partition(G):

    # For further details on metis-parameters, please refer to the manual
    settings = nxmetis.MetisOptions(ncuts=4, niter=200, ufactor=280)
    par = nxmetis.partition(G, 2, options=settings)
    the_edge_cut = par[0]
    community1 = par[1][0]
    community2 = par[1][1]
    comm = [community1, community2, the_edge_cut]

    return (comm)
Пример #11
0
def metis_partition(G):
    """ Takes a networkX graph and the number of clusters to be formed,
    and partitions the graph in that number of clusters using the
    METIS algorithm. Returns the graph with added cluster attributes.  
    """
    partition_list = partition(G, 2)[1]
    for i in range(2):
        for username in partition_list[i]:
            G.add_node(username, cluster=i)
            
    return G
Пример #12
0
    def partition(self, num_partitions=5):
        for node in self.cg.graph.nodes:
            w = self.cg.graph.nodes[node]["node_data"].weight
            self.cg.graph.nodes[node]["weight"] = int(w)
        for nfrom, nto in self.cg.graph.edges:
            w = self.cg.graph[nfrom][nto]["edge_data"].weight
            self.cg.graph[nfrom][nto]["weight"] = int(w)

        bgraph = nx.Graph(self.cg.graph)
        #import pdb; pdb.set_trace()
        parts = nxmetis.partition(bgraph, num_partitions)
        return parts
Пример #13
0
def partition_metis(g, fpga, pe, ufactor=1):
    logger.debug("Dividing into {} partitions, ufactor: {}".format(fpga, ufactor))
    ug = g.to_undirected()
    for node in ug.nodes():
        ug.nodes[node]['weight'] = ug.degree(node)
    objval, fpgaparts = nxmetis.partition(ug, fpga, options=nxmetis.MetisOptions(contig=False, ufactor=ufactor))
    logger.debug("Edges crossing: {} , expected from random partition: {}".format(objval , nx.number_of_edges(ug)*(fpga-1)/fpga))
    logger.debug("Improvement: {}x".format((nx.number_of_edges(ug)*(fpga-1)/fpga)/objval))

    parts = []
    for part in fpgaparts:
        parts.extend(_partition_greedy(g, pe, part))

    return relabel_with_parts(g, parts)
Пример #14
0
def partition_here(graph):
    
    if nx.is_empty(graph):
        return 0, 0
    Gcc = sorted(nx.connected_components(graph), key=len, reverse=True)
    G = graph.subgraph(Gcc[0])
    settings = nxmetis.MetisOptions(ncuts=4, niter=200, ufactor=280)
    par = nxmetis.partition(G, 2, options=settings)
    
    community1 = par[1][0]
    community2 = par[1][1]

    rwc = np.mean(randomwalk_polarization(G, 100, 0.02, 1000, community1, community2))
    prc = len(G)/len(graph)
    
    return rwc, prc
Пример #15
0
 def create_partition_graph(tgraph, pgraph):
     partition = nxmetis.partition(tgraph, len(pgraph), None, None,
                                   'weight', None, None, None, True)
     partition_graph = nx.Graph()
     partition_graph.add_nodes_from(pgraph.nodes())
     for i in range(len(partition[1])):
         for j in range(len(partition[1])):
             if j != i:
                 val = 0
                 for elem_from_i in partition[1][i]:
                     for elem_from_j in partition[1][j]:
                         if tgraph.has_edge(elem_from_i, elem_from_j):
                             val += tgraph.get_edge_data(
                                 elem_from_i, elem_from_j)['weight']
                 if val > 0:
                     partition_graph.add_edge(i, j, weight=val)
     return partition, partition_graph
Пример #16
0
def patition(graph, num_blocks):

    block_node_sets = []
    node_block_dict = {}
    block_id = -1
    logger.debug('-' * 5 + ' starting partitioning ' + '-' * 5)
    (edge_cut, partitions) = nxmetis.partition(graph, num_blocks)
    logger.debug('number of edge cuts: {:d}'.format(edge_cut))

    for ind, partition in enumerate(partitions):
        subgraph = nx.subgraph(graph, partition)
        logger.debug('partion: {:d}'.format(ind))
        logger.debug('number of nodes: {:d}'.format(
            subgraph.number_of_nodes()))
        logger.debug('number of edges: {:d}'.format(
            subgraph.number_of_edges()))
        logger.debug('number of connected components: {:d}'.format(
            nx.number_connected_components(subgraph)))
        logger.debug('-' * 5)

        block_node_sets.append(sorted(partition))
        for node in subgraph.nodes:
            node_block_dict[node] = ind

    block_boundary_edges_dict = {
    }  # key - block id, value - boundary edge list
    cut = 0
    for edge in graph.edges():
        node_1, node_2 = edge
        node_1_block_id = node_block_dict[node_1]
        node_2_block_id = node_block_dict[node_2]
        if not node_1_block_id == node_2_block_id:
            cut += 1
            if node_1_block_id not in block_boundary_edges_dict:
                block_boundary_edges_dict[node_1_block_id] = []
            if node_2_block_id not in block_boundary_edges_dict:
                block_boundary_edges_dict[node_2_block_id] = []
            block_boundary_edges_dict[node_1_block_id].append((node_1, node_2))
            block_boundary_edges_dict[node_2_block_id].append((node_2, node_1))

    logger.debug('number of edge cuts: {:d}'.format(cut))

    return block_node_sets, node_block_dict, block_boundary_edges_dict
Пример #17
0
def nxmetis_partition_np_adj_mat(adj_mat, num_partitions):
    '''
    Args:
        adj_mat: numpy array with adj_mat[i][j] = 1 if there is an edge
            between nodes i ad j and 0 otherwise
        num_partitions: number of partitions
    
    Return:
        partition2nodes: list of lists, each sublist is the nodes for
            the respective partition
        node2partition: size-num_nodes list, node2partition[i] is
            partition index of node i
    '''
    G = np_adj_mat_to_nxgraph(adj_mat)
    _, partition2nodes = nxmetis.partition(G, num_partitions)
    node2partition = [0 for i in range(len(adj_mat))]
    for i, partition in enumerate(partition2nodes):
        for node in partition:
            node2partition[node] = i
    return partition2nodes, node2partition
Пример #18
0
    def Metis(self, flag):
        s = time.time()

        (cut, parts) = nxmetis.partition(self.G,
                                         edge_weight='totalWeight',
                                         nparts=self.parts,
                                         recursive=True)
        e = time.time()
        self.partitioning = e - s
        print("partition cost:", e - s)

        partitions = [set() for i in range(self.parts)]

        for i in range(len(parts)):
            for node in parts[i]:
                #record the index of the partition the node belong to.
                self.G.node[node]['partitionID'] = i
                partitions[i].add(node)

        return partitions
Пример #19
0
def three_graph(snapshot_tuple, graph_type):
    retweet_graph = snapshot_tuple[0]
    mention_graph = snapshot_tuple[1]
    reply_graph = snapshot_tuple[2]
    partitions = nxmetis.partition(retweet_graph.to_undirected(), 2)
    left_side_nodes = partitions[1][0]
    right_side_nodes = partitions[1][1]
    if graph_type == 'retweet':
        main_graph = retweet_graph
        left_side = retweet_graph.subgraph(left_side_nodes)
        right_side = retweet_graph.subgraph(right_side_nodes)
    elif graph_type == 'mention':
        main_graph = mention_graph
        left_side = mention_graph.subgraph(left_side_nodes)
        right_side= mention_graph.subgraph(right_side_nodes)
    elif graph_type == 'reply':
        main_graph = reply_graph
        left_side = reply_graph.subgraph(left_side_nodes)
        right_side = reply_graph.subgraph(right_side_nodes)
    return tuple((main_graph, left_side, right_side))
Пример #20
0
    def compareMetis(self):

        print("baseline metis")
        s = time.time()
        (cut, parts) = nxmetis.partition(self.G,
                                         edge_weight='trueweight',
                                         nparts=self.parts,
                                         recursive=True)
        e = time.time()
        self.baselineTime = e - s
        print("partition cost:", e - s)
        partitions = [set() for i in range(self.parts)]

        print("edge_cut by library:", cut)

        for i in range(len(parts)):
            for node in parts[i]:
                self.G.node[node]['partitionID'] = i
                partitions[i].add(node)

        self.quality(partitions, 0)
Пример #21
0
 def create_partition_graph(
     tgraph, pgraph
 ):  #we create a partition of a given app_graph to len(graph)-chunks,
     #several tasks that communicate tightly are combined into one block, an edge between each block has weight equal to sum of all edges between all tasks in two different blocks
     #
     partition = nxmetis.partition(tgraph, len(pgraph), None, None,
                                   'weight', None, None, None, True)
     partition_graph = nx.Graph()
     partition_graph.add_nodes_from(pgraph.nodes())
     for i in range(len(partition[1])):
         for j in range(len(partition[1])):
             if j != i:
                 val = 0
                 for elem_from_i in partition[1][i]:
                     for elem_from_j in partition[1][j]:
                         if tgraph.has_edge(elem_from_i, elem_from_j):
                             val += tgraph.get_edge_data(
                                 elem_from_i, elem_from_j)['weight']
                 if val > 0:
                     partition_graph.add_edge(i, j, weight=val)
     return partition, partition_graph
Пример #22
0
    def test_partition(self):
        partition = nxmetis.partition(self.G, 4)
        # When we choose one node from one part of the partitioned Graph,
        # It must be adjacent to one or more of the nodes in the same part.
        # This is to verify the continuity of the chain of nodes.
        parts = partition[1]  # List containing partitioned node lists

        assert_equal(partition[0], 4)
        assert_equal(len(partition[1]), 4)

        for part in parts:
            assert_not_equal(0, len(part))  # Non-empty set
            assert_equal(len(part), len(set(part)))  # Duplicate-free
            assert (nx.is_connected(self.G.subgraph(part)))  # Connected

        # Disjoint sets
        for part1, part2 in itertools.combinations(parts, 2):
            assert_equal(set(), set(part1) & set(part2))

        # These parts must be exhaustive with the node list of the Graph
        parts_combined = parts[0] + parts[1] + parts[2] + parts[3]
        assert_equal(set(parts_combined), set(self.G))
Пример #23
0
def partition_metis(g, fpga, pe, ufactor=1):
    logger.debug("Dividing into {} partitions, ufactor: {}".format(
        fpga, ufactor))
    ug = g.to_undirected()
    for node in ug.nodes():
        ug.nodes[node]['weight'] = ug.degree(node)
    objval, fpgaparts = nxmetis.partition(ug,
                                          fpga,
                                          options=nxmetis.MetisOptions(
                                              contig=False, ufactor=ufactor))
    logger.debug(
        "Edges crossing: {} , expected from random partition: {}".format(
            objval,
            nx.number_of_edges(ug) * (fpga - 1) / fpga))
    logger.debug("Improvement: {}x".format(
        (nx.number_of_edges(ug) * (fpga - 1) / fpga) / objval))

    parts = []
    for part in fpgaparts:
        parts.extend(_partition_greedy(g, pe, part))

    return relabel_with_parts(g, parts)
Пример #24
0
def partiton_graph(graph: Graph, num_partitions: int, weighting_function: Optional[Callable[[Any], int]] = None, **METIS_opts):
    wfunc = weighting_function if weighting_function != None else default_weight_func

    weights = {node.idx: wfunc(node.weight) for node in graph.nodes}

    G = graph.asNetworkx()
    nx.set_node_attributes(G, weights, 'weight')

    _, parts = nxmetis.partition(G, num_partitions)

    parts = sorted((idx, n) for n, p in enumerate(parts)for idx in p)
    parts = [n for _, n in parts]

    post_process_partition(graph, parts)

    actual_nparts = len({n.part for n in graph.nodes})

    if(actual_nparts < num_partitions):
        print(
            f"expected {num_partitions} partitions but only {actual_nparts} found implicating that the model to partition is too small")
        print("consider increasing the depth of graph or disabling the basic blocks option")
    return graph
Пример #25
0
    def test_partition(self):
        partition = nxmetis.partition(self.G, 4)
        # When we choose one node from one part of the partitioned Graph,
        # It must be adjacent to one or more of the nodes in the same part.
        # This is to verify the continuity of the chain of nodes.
        parts = partition[1]  # List containing partitioned node lists

        nose.tools.assert_equal(partition[0], 4)
        nose.tools.assert_equal(len(partition[1]), 4)

        for part in parts:
            nose.tools.assert_not_equal(0, len(part))  # Non-empty set
            nose.tools.assert_equal(len(part), len(set(part)))  # Duplicate-free
            nose.tools.ok_(nx.is_connected(self.G.subgraph(part)))  # Connected

        # Disjoint sets
        for part1, part2 in itertools.combinations(parts, 2):
            nose.tools.assert_equal(set(), set(part1) & set(part2))

        # These parts must be exhaustive with the node list of the Graph
        parts_combined = parts[0] + parts[1] + parts[2] + parts[3]
        nose.tools.assert_equal(set(parts_combined), set(self.G))
Пример #26
0
def metis_partition_groups_seeds(G,
                                 only_seed=False,
                                 maximum_group_size=MAXIMUM_COMPONENT_SIZE):
    CC = [cc for cc in nx.connected_components(G)]
    GL = []
    for subV in CC:
        if len(subV) > maximum_group_size:
            # use metis to split the graph
            subG = nx.subgraph(G, subV)
            nparts = int(len(subV) / maximum_group_size + 1)
            (edgecuts, parts) = nxmetis.partition(subG, nparts)
            # add to group list
            GL += parts
        else:
            GL += [list(subV)]

    SL = []
    if only_seed:
        for p in GL:
            pG = nx.subgraph(G, p)
            SL += [nx.maximal_independent_set(G)]

    return GL, SL
Пример #27
0
 matplotlib.use('Agg')
 threshold = 0.8
 print('load sentiment model')
 model = load_model_sentiment(
     '/root/Sentiment-analysis/sentiment_module.model')
 print('load dataset')
 for file in [
         'germanwings_data', 'indiana_data', 'indiasdaughter_data',
         'leadersdebate_data', 'mothersday_data'
 ]:
     dataloader = Dataloader('/root/tweets_dataset')
     dataset = dataloader.load_files(file)
     print('build retweet and reply dynamic graph')
     ret_graph = static_retweet_graph(dataset)
     print('partition retweet graph')
     partitions = nxmetis.partition(ret_graph, 2)
     op_nodes = partitions[1][0]
     agg_nodes = partitions[1][1]
     for graph_type in ['mention', 'reply']:
         rep_graphs = dynamic_graph(dataset,
                                    graph_type=graph_type,
                                    sentiment=True,
                                    cumulative=False)
         between_scores = {'neg': [], 'pos': []}
         op_scores = {'neg': [], 'pos': []}
         agg_scores = {'neg': [], 'pos': []}
         between_count = {'neg': [], 'pos': []}
         op_count = {'neg': [], 'pos': []}
         agg_count = {'neg': [], 'pos': []}
         for key, rep_graph in rep_graphs.items():
             for edge in rep_graph.edges:
Пример #28
0
def node_selecting_scheme(
        graph_t0,
        graph_t1,
        reservoir_dict,
        limit=0.1,
        scheme=4
):  # currently, only focus on the changes of network **topology**
    ''' select nodes to be updated
          G0: previous graph @ t-1;
          G1: current graph  @ t;
          reservoir_dict: will be always maintained in ROM
          limit: fix the number of node --> the percentage of nodes of a network to be updated (exclude new nodes)

          scheme 1 for greedy, 2 for random, 3 for modularity based, 4 for METIS based
     '''
    G0 = graph_t0.copy()
    G1 = graph_t1.copy()
    edge_add = edge_s1_minus_s0(s1=set(G1.edges()), s0=set(
        G0.edges()))  # one may directly use steam added edges if possible
    edge_del = edge_s1_minus_s0(s1=set(G0.edges()), s0=set(G1.edges()))

    node_affected_by_edge_add = unique_nodes_from_edge_set(edge_add)
    node_affected_by_edge_del = unique_nodes_from_edge_set(edge_del)
    node_affected = list(
        set(node_affected_by_edge_add + node_affected_by_edge_del))
    node_add = [
        node for node in node_affected_by_edge_add if node not in G0.nodes()
    ]
    node_del = [
        node for node in node_affected_by_edge_del if node not in G1.nodes()
    ]

    exist_node_affected = list(
        set(node_affected) - set(node_add) - set(node_del)
    )  # now, we only consider the 1st-order affected nodes are in both G0 and G1;
    exist_node_not_affected = list(
        set(G1.nodes()) - set(node_add) - set(exist_node_affected)
    )  # for 2nd-order, see "select_most_affected_nodes_nbrs"

    if len(node_del) != 0:
        reservoir_key_list = list(reservoir_dict.keys())
        for node in node_del:
            if node in reservoir_key_list:
                del reservoir_dict[
                    node]  # if a node is deleted, also delete it from reservoir

    t1 = time.time()
    num_limit = int(
        G1.number_of_nodes() * limit
    )  # the maximum number of nodes to be selected i.e. **alpha** in the paper
    most_affected_nodes = []  # used in scheme 1
    random_nodes = []  # used in scheme 2
    diverse_nodes = []  # used in scheme 3 and scheme 4
    node_update_list = []  # all the nodes to be updated

    reservoir_dict = update_reservoir_dict(
        G0, G1, reservoir_dict, exist_node_affected
    )  # update reservoir dict {node_ID: changes, ...} based on the steam edges

    #----------------------------------------------------------------------------------------------------------------- node selecting strategy 4
    #NOTE: one may use different node selecting strategy, so that other desireable network topology can be encoded into random walks
    if True:
        print(
            'scheme == 4, the METIS based diverse approach biased to most affected nodes'
        )
        import nxmetis
        start_comm_det = time.time()
        cost_parts = nxmetis.partition(G=G1, nparts=num_limit)
        parts = cost_parts[1]  # cost = cost_parts[0] useless
        empty_part_counter = 0
        for part in parts:  # part i.e. community, operation in one community at each loop
            if len(part) == 0:
                empty_part_counter += 1
            else:
                node_scores = []  # node_scores within this part
                for node in part:
                    try:
                        node_scores.append(
                            math.exp(reservoir_dict[node] / G0.degree[node]))
                    except:
                        node_scores.append(1)  # (2 or e)^0 = 1
                node_scores_prob = []  # normalize node_scores within this part
                part_sum = sum(node_scores)
                for i in range(len(node_scores)):
                    node_scores_prob.append(node_scores[i] / part_sum)
                # sample one node from this part based on node_scores_prob, which bias to recent changes
                diverse_nodes.append(np.random.choice(part,
                                                      p=node_scores_prob))

        # ---- due to the limitation of METIS, there might be few empty parts ----
        if empty_part_counter != 0:
            remaining_pool = list(G1.nodes() - set(node_add) -
                                  set(diverse_nodes))
            remaining_pool_score = []
            for node in remaining_pool:
                try:
                    remaining_pool_score.append(
                        math.exp(reservoir_dict[node] / G0.degree[node]))
                except:
                    remaining_pool_score.append(1)
            remaining_pool_score_sum = sum(remaining_pool_score)
            remaining_pool_scores_prob = []
            for i in range(len(remaining_pool_score)):
                remaining_pool_scores_prob.append(remaining_pool_score[i] /
                                                  remaining_pool_score_sum)
            diverse_nodes.extend(
                np.random.choice(remaining_pool,
                                 size=empty_part_counter,
                                 replace=True,
                                 p=remaining_pool_scores_prob))
        end_comm_det = time.time()
        print('MIETS time: ', end_comm_det - start_comm_det)
        node_update_list = node_add + diverse_nodes
    #----------------------------------------------------------------------------------------------------------------- END of node selecting strategy 4

    for node in node_update_list:
        try:
            del reservoir_dict[node]  # if updated, delete it from reservoir
        except:
            pass
    t2 = time.time()
    print(f'--> node selecting time; time cost: {(t2-t1):.2f}s')
    print(f'# num_limit {num_limit}, # nodes updated {len(node_update_list)}')
    print(f'# nodes added {len(node_add)}, # nodes deleted {len(node_del)}')
    print(
        f'# nodes most affected {len(most_affected_nodes)}  \t ===== S1 =====')
    print(f'# of random nodes {len(random_nodes)}         \t ===== S2 =====')
    print(
        f'# diverse nodes {len(diverse_nodes)}        \t ===== S3 or S4 =====')
    print(
        f'# nodes in reservoir with accumulated changes but not updated {len(list(reservoir_dict))}'
    )
    print(f'# all nodes affected {len(node_affected)}')
    return node_update_list, reservoir_dict
Пример #29
0
                    default=30,
                    type=int,
                    help="Number of nodes in Erdos-Renyi Graph")
parser.add_argument(
    "--p",
    default=0.4,
    type=float,
    help="Probability of edge being present in Erdos-Renyi Graph")
args = parser.parse_args()

if __name__ == "__main__":
    g = generate_er_graph(args.nodes, args.p)
    options = nxmetis.MetisOptions(dbglvl=nxmetis.enums.MetisDbgLvl.time,
                                   niter=1)
    _, parts = nxmetis.partition(G=g,
                                 nparts=2,
                                 options=options,
                                 recursive=False)
    recursive_fiedler_values = nx.algebraic_connectivity(g.subgraph(parts[0])), \
                               nx.algebraic_connectivity(g.subgraph(parts[1]))
    MAX_FIEDLER_VALUEX = -sys.maxsize
    MAX_FIEDLER_VALUEY = -sys.maxsize
    for i in range(100):
        swap_vertices, partition_vector = heurisitc_algorithm(g, parts)
        parts[0] = [vtx for vtx, i in enumerate(partition_vector) if i == 0]
        parts[1] = [vtx for vtx, i in enumerate(partition_vector) if i == 1]
        # print(initial_fiedler_values)
        # print(parts)
        (max_x, max_y) = maximum_fiedler_value_swaps(g, swap_vertices,
                                                     partition_vector,
                                                     recursive_fiedler_values)
        # print("Heuristic Bisection: {}".format((max_x, max_y)))
Пример #30
0
        # constructing nx.Graph and using metis in order to get min-cut partition
        G = nx.Graph()
        G.add_edges_from(non_anchor_edge_list)

        for node, degree in entity_degree.items():

            if node in G:

                G.node[node]['node_weight'] = degree

        options = nxmetis.MetisOptions(     # objtype=1 => vol
            ptype=-1, objtype=1, ctype=-1, iptype=-1, rtype=-1, ncuts=-1,
            nseps=-1, numbering=-1, niter=cur_iter, seed=-1, minconn=-1, no2hop=-1,
            contig=-1, compress=-1, ccorder=-1, pfactor=-1, ufactor=-1, dbglvl=-1)

        edgecuts, parts = nxmetis.partition(G, nparts=partition_num, node_weight='node_weight')

        # putting residue randomly into non anchor set
        residue = non_anchor_id.difference(non_anchor_edge_included_vertex)

        for v in residue:

            parts[randint(0, partition_num - 1)].append(v)

        # printing the number of entities in each paritions
        printt('[info] maxmin > # of entities in each partitions : [%s]' % " ".join([str(len(p)) for p in parts]))

        # 원소 여러 개를 한 번에 전송
        master_sock.send(pack('!i', len(list(anchor))))
        master_sock.send(pack('!' + 'i' * len(list(anchor)), *list(anchor)))
Пример #31
0
def find_metis_parts(conn, cur, parts):
    """TODO"""
    # Open a cursor to perform database operations
    (factor_view, variable_view, weight_view) = get_views(cur)
    # Obtain graph
    (factor, factor_pt, factor_ufo, fmap, edges) = \
        get_factors(cur, factor_view)

    hyperedges = []
    for f in factor:
        newedge = []
        for i in range(f['ftv_offset'], f['ftv_offset'] + f['arity']):
            newedge.append(fmap[i]['vid'])
        hyperedges.append(newedge)
    G = nx.Graph()
    for e in hyperedges:
        for i in range(len(e)):
            for j in range(i + 1, len(e)):
                newedge = (e[i], e[j])
                G.add_edge(*e)
    # Run metis to obtain partitioning
    metis_options = \
        nxmetis.MetisOptions(objtype=nxmetis.enums.MetisObjType.vol)
    (cost, partitions) = \
        nxmetis.partition(G, parts, options=metis_options)
    print(80 * "*")
    print(cost)
    print(partitions)
    print(80 * "*")

    # Find nodes to master
    master_variables = set([])
    # Get all edges
    cut_edges = set(G.edges())
    for p in partitions:
        H = G.subgraph(p)
        cut_edges -= set(H.edges())
        print(H.edges())
        H.clear()
    for edge in cut_edges:
        n1, n2 = edge
        master_variables.add(n1)
        master_variables.add(n2)
    # Store parition in DB
    try:
        cur.execute("CREATE TABLE variable_to_cc(dd_id bigint, cc_id bigint);")
    except:
        conn.rollback()
        cur.execute("TRUNCATE variable_to_cc;")

    rows = []
    # Output master variables
    for node in master_variables:
        rows.append([node, -1])

    print(master_variables)
    # Output minion variables
    pid = 0
    for p in partitions:
        only_master = True
        for node in p:
            if node not in master_variables:
                only_master = False
                rows.append([node, pid])
        if not only_master:
            pid += 1
    print(rows)
    dataText = ','.join(cur.mogrify('(%s,%s)', row) for row in rows)
    print(dataText)
    try:
        cur.execute("INSERT INTO variable_to_cc VALUES " + dataText)
        if pid > 1:
            cur.execute("CREATE INDEX dd_cc ON variable_to_cc (dd_id);")
        conn.commit()
        G.clear()
        return True
    except:
        conn.rollback()
        G.clear()
        return False
Пример #32
0
from utils.network_building import *
import nxmetis

if __name__ == '__main__':
    for file in [
            'germanwings_data', 'indiana_data', 'indiasdaughter_data',
            'leadersdebate_data', 'mothersday_data', 'baltimore_data',
            'beefban_data'
    ]:
        print('load dataset : %s' % file)
        dataloader = Dataloader('/root/tweets_dataset')
        dataset = dataloader.load_files(file)

        # mention graph analysis
        mention_graph = static_mention_graph(dataset, directed=True)
        partitions = nxmetis.partition(mention_graph.to_undirected(), 2)
        bt_con = betweenness_centrality_controversy(mention_graph, partitions)
        RWW_con = random_walk_conteroversy(mention_graph, partitions, 1000)
        print("mention graph controversy measures")
        print("Betweennes Measure = %s" % bt_con)
        print("RWW Measure = %s" % RWW_con)

        # reply graph analysis
        reply_graph = static_reply_graph(dataset, directed=True)
        partitions = nxmetis.partition(reply_graph.to_undirected(), 2)
        bt_con = betweenness_centrality_controversy(reply_graph, partitions)
        RWW_con = random_walk_conteroversy(reply_graph, partitions, 1000)
        print("reply graph controversy measures")
        print("Betweennes Measure = %s" % bt_con)
        print("RWW Measure = %s" % RWW_con)
Пример #33
0
 def metis_partition(self, parts):
     edgecuts, metis_list = nxmetis.partition(self.graph, parts)
     metis_set_list = [set(l) for l in metis_list]
     return metis_set_list