def __mkMap(key, nf, ni, ef1, ef2, ei, oFile): # leaf nodeの構築 infL = [ nm.mcommon(k=ef1, K=key, m=ei, r=True, i=ei).mcut(f="%s:nam" % (ef1)), nm.mcommon(k=ef2, K=key, m=ei, r=True, i=ei).mcut(f="%s:nam" % (ef2)) ] if ni: infL.append( nm.mcommon(k=nf, K=key, m=ei, r=True, i=ni).mcut(f="%s:nam" % (nf))) xleaf = nm.muniq(i=infL, k="nam") xleaf <<= nm.msetstr(v=1, a="leaf") if ni: inp = [ nm.mcut(f="%s:nam" % (nf), i=ni), nm.mcut(f="%s:nam" % (key), i=ni) ] else: inp = [ nm.mcut(f="%s:nam" % (ef1), i=ei), nm.mcut(f="%s:nam" % (ef2), i=ei), nm.mcut(f="%s:nam" % (key), i=ei) ] f = None f <<= nm.muniq(k="nam", i=inp) f <<= nm.mjoin(k="nam", m=xleaf, f="leaf", n=True) # nullは最初に来るはずなので、mcalでなくmnumberでもnullを0に採番できるはずだが念のために f <<= nm.mcal(c='if(isnull($s{nam}),0,line()+1)', a="num") f <<= nm.mnullto(f="nam", v="##NULL##", o=oFile) f.run()
def mnest2tree(ei, ef, k, ni=None, nf=None, ev=None, no=None, eo=None): # paracheck追加 efs = ef.split(",") ef1 = efs[0] ef2 = efs[1] f = nm.mcut(f="%s:#orgKey,%s:#orgEf1,%s:#orgEf2" % (k, ef1, ef2), i=ei) temp = mtemp.Mtemp() of = temp.file() with _nu.mcsvout(o=of, f="#orgKey,#orgEf1,#orgEf2,#ef1,#ef2") as oCSV: for flds in f: orgKey = flds[0] orgEf1 = flds[1] orgEf2 = flds[2] oCSV.write([orgKey, orgEf1, orgEf2, orgKey, orgEf1]) oCSV.write([orgKey, orgEf1, orgEf2, orgKey, orgEf2]) f = None f <<= nm.mjoin(k="#orgKey,#orgEf1,#orgEf2", K=[k, ef1, ef2], m=ei, i=of) # 全項目join if ev: f <<= nm.mavg(k="#ef1,#ef2", f=ev) else: f <<= nm.muniq(k="#ef1,#ef2") f <<= nm.mcut(r=True, f="#orgKey,#orgEf1,#orgEf2") f <<= nm.mfldname(f="#ef1:%s,#ef2:%s" % (ef1, ef2), o=eo) f.run() if ni: head = nu.mheader(i=ni) fldnames = [s for s in head if s != nf] commas = ',' * (len(fldnames) - 1) f0 = None f0 <<= nm.mcut(f="%s:%s" % (ef1, nf), i=eo) f0 <<= nm.muniq(k=nf) f0 <<= nm.mcommon(k=nf, m=ni, r=True) f0 <<= nm.msetstr(v=commas, a=fldnames) f = nm.mcut(f=k, r=True, i=[ni, f0]) f <<= nm.msetstr(v="", a=k, o=no) f.run()
def run(self, **kw_args): os.environ["KG_VerboseLevel"] = "2" if "msg" in kw_args: if kw_args["msg"] == "on": os.environ['KG_ScpVerboseLevel'] = "3" temp = Mtemp() xxedge = temp.file() xxnode = temp.file() xxnam2num = temp.file() xxnum2nam = temp.file() xxebase = temp.file() xxbody = temp.file() e1 = None if self.ew: e1 <<= nm.mcut(f="%s:__node1,%s:__node2,%s:__weight" % (self.ef1, self.ef2, self.ew), i=self.eFile) else: e1 <<= nm.mcut(f="%s:__node1,%s:__node2" % (self.ef1, self.ef2), i=self.eFile) e1 <<= nm.muniq(k="__node1,__node2") e2 = nm.mfldname(i=e1, f="__node2:__node1,__node1:__node2") fe = None fe <<= nm.muniq(k="__node1,__node2", i=[e1, e2], o=xxedge) fe.run() # cleaning the node data (remove duplicate nodes) fn = None if self.nFile: if self.nw: fn <<= nm.mcut(f="%s:__node,%s" % (self.nf, self.nw), i=self.nFile) else: fn <<= nm.mcut(f="%s:__node" % (self.nf), i=self.nFile) fn <<= nm.muniq(k="__node", o=xxnode) else: xxen1 = nm.mcut(f="__node1:__node", i=xxedge) xxen2 = nm.mcut(f="__node2:__node", i=xxedge) fn <<= nm.muniq(k="__node", o=xxnode, i=[xxen1, xxen2]) fn.run() # 節点名<=>節点番号変換表の作成 fmap = None fmap <<= nm.mcut(f="__node", i=xxnode) fmap <<= nm.mnumber(a="__num", S=1, q=True, o=xxnam2num) fmap <<= nm.msortf(f="__num", o=xxnum2nam) fmap.run() # 節点ファイルが指定された場合は枝ファイルとの整合性チェック if self.nFile: ncheck = nm.mcut(f="__node1:__node", i=xxedge) ncheck <<= nm.mcommon(k="__node", m=xxnam2num, r=True) nmatch = ncheck.run() if len(nmatch) > 0: raise Exception( "#ERROR# the node named '%s' in the edge file doesn't exist in the node file." % (nmatch[0][0])) # metisのグラフファイルフォーマット # 先頭行n m [fmt] [ncon] # n: 節点数、m:枝数、ncon: 節点weightの数 # 1xx: 節点サイズ有り (not used, meaning always "0") # x1x: 節点weight有り # xx1: 枝がweightを有り # s w_1 w_2 ... w_ncon v_1 e_1 v_2 e_2 ... v_k e_k # s: 節点サイズ (節点サイズは利用不可) # w_x: 節点weight # v_x: 接続のある節点番号(行番号) # e_x: 枝weight # -------------------- # generate edge data using the integer numbered nodes #fnnum = None fnnum = nm.mcut(f="__num:__node_n1", i=xxnam2num) # {xxnnum} fenum = None fenum <<= nm.mjoin(k="__node1", K="__node", f="__num:__node_n1", m=xxnam2num, i=xxedge) fenum <<= nm.mjoin(k="__node2", K="__node", f="__num:__node_n2", m=xxnam2num) fenum <<= nm.msortf(f="__node_n1") #{xxenum} febase = None febase <<= nm.mnjoin(k="__node_n1", m=fenum, i=fnnum, n=True) febase <<= nm.msortf(f="__node_n1%n,__node_n2%n", o=xxebase) #{xxebase}" febase.run() fbody = None if not self.ew: fbody <<= nm.mcut(f="__node_n1,__node_n2", i=xxebase) fbody <<= nm.mtra(k="__node_n1", f="__node_n2", q=True) fbody <<= nm.mcut(f="__node_n2", nfno=True, o=xxbody) # if ew= is specified, merge the weight data into the edge data. else: febody = None febody <<= nm.mcut(f="__node_n1,__node_n2:__v", i=xxebase) febody <<= nm.mnumber(S=0, I=2, a="__seq", q=True) fwbody = None fwbody <<= nm.mcut(f="__node_n1,__weight:__v", i=xxebase) fwbody <<= nm.mnumber(S=1, I=2, a="__seq", q=True) fbody <<= nm.msortf(f="__seq%n", i=[febody, fwbody]) fbody <<= nm.mtra(k="__node_n1", f="__v", q=True) fbody <<= nm.mcut(f="__v", nfno=True, o=xxbody) fbody.run() # xxbody # 2 7 3 8 5 9 # 1 7 3 10 5 11 7 12 # 1 8 2 10 4 13 7 14 # -------------------- # generate node data using integer number if self.nFile and self.nw: # xxnode # __node,v1,v2 # a,1,1 # b,1,1 # c,1,1 xxnbody = temp.file() xxnbody1 = temp.file() fnbody = None fnbody <<= nm.mjoin(k="__node", f="__num", i=xxnode, m=xxnam2num) fnbody <<= nm.msortf(f="__num%n") fnbody <<= nm.mcut(f=self.nw, nfno=True) fnbody <<= nm.cmd("tr ',' ' ' ") # tricky!! fnbody <<= nm.mwrite(o=xxnbody) fnbody.run() # xxnbody # 1 1 # 1 1 # 1 1 # paste the node weight with edge body fnbody1 = None fnbody1 <<= nm.mpaste(nfn=True, m=xxbody, i=xxnbody) fnbody1 <<= nm.cmd("tr ',' ' ' ") fnbody1 <<= nm.mwrite(o=xxnbody1) fnbody1.run() os.system("mv %s %s" % (xxnbody1, xxbody)) # xxbody # 1 1 2 7 3 8 5 9 # 1 1 1 7 3 10 5 11 7 12 # 1 1 1 8 2 10 4 13 7 14 eSize = mrecount(i=xxedge) eSize /= 2 nSize = mrecount(i=xxnode) nwFlag = 1 if self.nw else 0 ewFlag = 1 if self.ew else 0 fmt = "0%d%d" % (nwFlag, ewFlag) xxhead = temp.file() xxgraph = temp.file() os.system("echo '%d %d %s %d' > %s" % (nSize, eSize, fmt, self.ncon, xxhead)) os.system("cat %s %s > %s" % (xxhead, xxbody, xxgraph)) if self.mFile: nm.mfldname(f="__num:num,__node:node", i=xxnum2nam, o=self.mFile).run() if self.dFile: os.system("cp %s %s" % (xxgraph, self.dFile)) if not self.noexe: if self.verbose: os.system( "gpmetis -seed=%d -ptype=%s -ncuts=%d -ufactor=%d %s %d" % (self.seed, self.ptype, self.ncuts, self.ufactor, xxgraph, self.kway)) else: os.system( "gpmetis -seed=%d -ptype=%s -ncuts=%d -ufactor=%d %s %d > /dev/null" % (self.seed, self.ptype, self.ncuts, self.ufactor, xxgraph, self.kway)) import glob if len(glob.glob(xxgraph + ".part.*")) == 0: raise Exception( "#ERROR# command `gpmetis' didn't output any results") # 節点名を数字から元に戻す # #{xxgraph}.part.#{kway} # 1 # 0 # 1 fo = None fo <<= nm.mcut(f="0:cluster", nfni=True, i=xxgraph + ".part." + str(self.kway)) fo <<= nm.mnumber(S=1, a="__num", q=True) fo <<= nm.mjoin(k="__num", f="__node", m=xxnum2nam) fo <<= nm.msortf(f="__node,cluster") if self.nf: fo <<= nm.mcut(f="__node:%s,cluster" % (self.nf), o=self.oFile) else: fo <<= nm.mcut(f="__node:node,cluster", o=self.oFile) fo.run() nu.mmsg.endLog(self.__cmdline())
tra <<= nm.mcut(f="id,date2:date,ret") # frequency of one item freq = None freq <<= nm.mcut(f="id", i=tra) freq <<= nm.mcount(k="id", a="freq") freq <<= nm.mselnum(f="freq", c="[5,]") # total number of transactions total = None total <<= nm.mcut(f="date", i=tra) total <<= nm.muniq(k="date") total <<= nm.mcount(a="total") # frequency of cooccurence of id, and calculate lift values itemCoFreq = None itemCoFreq <<= nm.mcut(f="date,id", i=tra) itemCoFreq <<= nm.mcommon(k="id", m=freq) itemCoFreq <<= nm.mcombi(k="date", n=2, f="id", a="id1,id2") itemCoFreq <<= nm.mcut(f="id1,id2") itemCoFreq <<= nm.mfsort(f="id1,id2") itemCoFreq <<= nm.mcount(k="id1,id2", a="coFreq") itemCoFreq <<= nm.mjoin(k="id1", m=freq, K="id", f="freq:freq1") itemCoFreq <<= nm.mjoin(k="id2", m=freq, K="id", f="freq:freq2") itemCoFreq <<= nm.mproduct(m=total, f="total") itemCoFreq <<= nm.mcal(c="(${coFreq}*${total})/(${freq1}*${freq2})", a="lift") itemCoFreq <<= nm.msel(c="${lift}>10 && ${coFreq}>6") r = itemCoFreq.run(msg=debug) print(r) print(len(r))
def enumerate(self,eArgs): tf=nu.Mtemp() # 最小サポートと最小サポート件数 if "minCnt" in eArgs : self.minCnt = int(eArgs["minCnt"]) self.minSup = float(self.minCnt)/ float(self.db.size) else: self.minSup = float(eArgs["minSup"]) self.minCnt = int(self.minSup * float(self.db.size) + 0.99) # 最大サポートと最大サポート件数 self.maxCnt=None if "maxCnt" in eArgs or "maxSup" in eArgs: if "maxCnt" in eArgs: self.maxCnt = int(eArgs["maxCnt"]) self.maxSup = float(self.maxCnt)/float(self.db.size) else: self.maxSup = float(eArgs["maxSup"]) self.maxCnt = int(self.maxSup * float(self.db.size) + 0.99) #未使用 #@minProb = eArgs["minProb"].to_f # 事後確率 #@minGR = @minProb/(1-@minProb) # 増加率 #@minGR = eArgs["minGR"].to_f if eArgs["minGR"] # あるクラスをpos、他のクラスをnegにして、パターン列挙した結果ファイル名を格納する pFiles=[] tFiles=[] for cName,posSize in self.db.clsNameRecSize.items(): negSize=self.db.size-posSize # minGRの計算 if "minGR" in eArgs: self.minGR=eArgs["minGR"] else: minProb = eArgs["minProb"] if ( "minProb" in eArgs ) else 0.5 if "uniform" in eArgs and eArgs["uniform"]: self.minGR = (minProb/(1-minProb)) * (self.db.clsSize-1) # マニュアルの式(4) else: self.minGR = (minProb/(1-minProb)) * (float(negSize)/float(posSize)) # マニュアルの式(4) # 最小サポートと最小サポート件数 if "minCnt" in eArgs: self.minPos = eArgs["minCnt"] else: self.minPos = int(eArgs["minSup"] * float(posSize) + 0.99) # 最大サポートと最大サポート件数 if "maxCnt" in eArgs or "maxSup" in eArgs: if "maxCnt" in eArgs: self.maxCnt = int(eArgs["maxCnt"]) else: self.maxCnt = int(eArgs["maxSup"] * float(posSize) + 0.99) self.sigma[cName] = self.calSigma(self.minPos,self.minGR,posSize,negSize) # lcm_seqのパラメータ設定と実行 lcmout = tf.file() # lcm_seq出力ファイル # 頻出パターンがなかった場合、lcm出力ファイルが生成されないので # そのときのために空ファイルを生成しておいく。 with open(lcmout, "w") as efile: pass params = {} if self.msgoff: params["type"] ="CIA_" else: params["type"] ="CIA" if self.maxCnt: # windowサイズ上限 params["U"] = str(self.maxCnt) if "minLen" in eArgs: params["l"] = str(eArgs["minLen"]) if 'maxLen' in eArgs: params["u"] = str(eArgs["maxLen"]) if 'gap' in eArgs: params["g"] = str(eArgs["gap"]) if 'win' in eArgs: params["G"] = str(eArgs["win"]) params["w"] = self.weightFile[cName] params["i"] = self.file params["sup"] = str(self.sigma[cName]) params["o"] = lcmout # lcm_seq実行 #MCMD::msgLog("#{run}") if 'padding' in eArgs and eArgs["padding"]: # padding指定時は、0アイテムを出力しないlcm_seqを実行 extTake.lcmseq_zero(params) else: extTake.lcmseq(params) # パターンのサポートを計算しCSV出力する #MCMD::msgLog("output patterns to CSV file ...") pFiles.append(self.temp.file()) transle = self.temp.file() extTake.lcmtrans(lcmout,"e",transle) # pattern,countP,countN,size,pid f=None f <<= nm.mdelnull(f="pattern",i=transle) f <<= nm.mcal(c='round(${countN},1)',a="neg") f <<= nm.mcal(c='round(${countP}/%s,1)'%(self.posWeight[cName]),a="pos") f <<= nm.mdelnull(f="pattern") f <<= nm.msetstr(v=cName,a="class") f <<= nm.msetstr(v=posSize,a="posTotal") f <<= nm.msetstr(v=self.minGR,a="minGR") f <<= nm.mcut(f="class,pid,pattern,size,pos,neg,posTotal,minGR",o=pFiles[-1]) f.run() #s = MCMD::mrecount("i=#{pFiles.last}") # 列挙されたパターンの数 #MCMD::msgLog("the number of contrast patterns on class `#{cName}' enumerated is #{s}") if self.outtf : # トランザクション毎に出現するシーケンスを書き出す #MCMD::msgLog("output tid-patterns ...") tFiles.append(self.temp.file()) xxw= tf.file() f=None f <<= nm.mcut(f=self.db.idFN,i=self.db.file) f <<= nm.muniq(k=self.db.idFN) f <<= nm.mnumber(S=0,a="__tid",q=True) f <<= nm.msortf(f="__tid",o=xxw) f.run() nm.mcut(f=self.db.idFN,i=self.db.file).muniq(k=self.db.idFN).mnumber(S=0,a="__tid",q=True,o=xxw).run() translt = self.temp.file() extTake.lcmtrans(lcmout,"t",translt) nm.mjoin(k="__tid",m=xxw,f=self.db.idFN,i=translt).msetstr(v=cName,a="class").mcut(f=self.db.idFN+",class,pid",o=tFiles[-1]).run() # クラス別のパターンとtid-pidファイルを統合して最終出力 self.pFile = self.temp.file() self.tFile = self.temp.file() # パターンファイル併合 xxpCat = tf.file() f = nm.mcat(i=",".join(pFiles)) f <<= nm.msortf(f="class,pid") f <<= nm.mnumber(s="class,pid",S=0,a="ppid",o=xxpCat) f.run() # パターンファイル計算 items=self.db.items f="" f = nm.mcut(f="class,ppid:pid,pattern,size,pos,neg,posTotal,minGR",i=xxpCat) f <<= nm.msetstr(v=self.db.size,a="total") f <<= nm.mcal(c='${total}-${posTotal}',a="negTotal") # negのトータル件数 f <<= nm.mcal(c='${pos}/${posTotal}',a="support") # サポートの計算 f <<= nm.mcal(c='if(${neg}==0,1.797693135e+308,(${pos}/${posTotal})/(${neg}/${negTotal}))',a="growthRate") if "uniform" in eArgs and eArgs["uniform"] == True: f <<= nm.mcal(c='(${pos}/${posTotal})/(${pos}/${posTotal}+(%s-1)*${neg}/${negTotal})'%(self.db.clsSize),a="postProb") else: f <<= nm.mcal(c='${pos}/(${pos}+${neg})',a="postProb") f <<= nm.msel(c='${pos}>=%s&&${growthRate}>=${minGR}'%(self.minPos)) # minSupとminGRによる選択 f <<= nm.mvreplace(vf="pattern",m=items.file,K=items.idFN,f=items.itemFN) f <<= nm.mcut(f="class,pid,pattern,size,pos,neg,posTotal,negTotal,total,support,growthRate,postProb") f <<= nm.mvsort(vf="pattern") f <<= nm.msortf(f="class%nr,postProb%nr,pos%nr",o=self.pFile) f.run() if self.outtf : # 列挙されたパターンを含むtraのみ選択するためのマスタ xxp4=nm.mcut(f="class,pid",i=self.pFile) f = nm.mcat(i=",".join(tFiles)) f <<= nm.mjoin(k="class,pid",m=xxpCat,f="ppid") # 全クラス統一pid(ppid)結合 f <<= nm.mcommon(k="class,ppid",K="class,pid",m=xxp4) # 列挙されたパターンの選択 f <<= nm.mcut(f=self.db.idFN+",class,ppid:pid") f <<= nm.msortf(f=self.db.idFN+",class,pid",o=self.tFile) f.run() self.size = nu.mrecount(i=self.pFile)
def run(self): from datetime import datetime t = datetime.now() wf = nu.Mtemp() xxinp = wf.file() xxmap = wf.file() input = self.ei self.g2pair(self.ni, self.nf, self.ei, self.ef1, self.ef2, xxinp, xxmap) xxmace = wf.file() # maceの出力(tra形式) para = {} if self.msgoff: para["type"] = "Ce_" if self.all else "Me_" else: para["type"] = "Ce" if self.all else "Me" para["i"] = xxinp para["o"] = xxmace if self.minSize: para["l"] = self.minSize if self.maxSize: para["u"] = self.maxSize extTake.mace(para) #MCMD::msgLog("converting the numbered nodes into original name ...") id = nu.mrecount(i=xxmace, nfni=True) # xxpair = wf.file() # 上記traをpair形式に変換したデータ fpair = None fpair <<= nm.mcut(i=xxmace, nfni=True, f="0:num") fpair <<= nm.mnumber(q=True, a="id") fpair <<= nm.mvcount(vf="num:size") fpair <<= nm.mtra(r=True, f="num") # when ni= specified, it add the isolated single cliques. if self.ni: fpair_u = nm.mread(i=fpair) if self.all: fpair_u <<= nm.mselstr(f="size", v=1) fpair_u <<= nm.mcut(f="num") fpair_u <<= nm.muniq(k="num") # select all nodes which are not included in any cliques xxiso = None xxiso <<= nm.mcut(f="num", i=xxmap) xxiso <<= nm.mcommon(k="num", m=fpair_u, r=True) xxiso <<= nm.mnumber(S=id, a="id", q=True) xxiso <<= nm.msetstr(v=1, a="size") xxiso <<= nm.mcut(f="id,num,size") # mcut入れないとおかしくなるあとで直す #ddlist = [fpair.mcut(f="id,num,size"),xxiso] xxpair = nm.mcut(i=[fpair, xxiso], f="id,num,size") else: xxpair = fpair xxpair <<= nm.mjoin(m=xxmap, k="num", f="node") xxpair <<= nm.mcut(f="id,node,size") xxpair <<= nm.msortf(f="id,node", o=self.oFile) xxpair.run() procTime = datetime.now() - t # ログファイル出力 if self.logFile: kv = [["key", "value"]] for k, v in self.args.items(): kv.append([k, str(v)]) kv.append(["time", str(procTime)]) nm.writecsv(i=kv, o=self.logFile).run()
def enumerate(self, eArgs): pFiles = [] tFiles = [] tf = mtemp.Mtemp() for cName, posSize in self.db.clsNameRecSize.items(): negSize = self.db.traSize - posSize if "minGR" in eArgs: self.minGR = eArgs["minGR"] else: minProb = eArgs["minProb"] if ("minProb" in eArgs) else 0.5 if "uniform" in eArgs and eArgs["uniform"] == True: self.minGR = (minProb / (1 - minProb)) * ( self.db.clsSize - 1) # マニュアルの式(4) else: self.minGR = (minProb / (1 - minProb)) * ( float(negSize) / float(posSize)) # マニュアルの式(4) # 最小サポートと最小サポート件数 # s=0.05 # s=c1:0.05,c2:0.06 # S=10 # S=c1:10,c2:15 if "minCnt" in eArgs: if isinstance(eArgs["minCnt"], dict): self.minPos = eArgs["minCnt"][cName] else: self.minPos = eArgs["minCnt"] else: if isinstance(eArgs["minSup"], dict): self.minPos = int(eArgs["minSup"][cName] * float(posSize) + 0.99) else: self.minPos = int(eArgs["minSup"] * flost(posSize) + 0.99) # 最大サポートと最大サポート件数 if "maxCnt" in eArgs: if isinstance(eArgs["maxCnt"], dict): self.maxPos = eArgs["maxCnt"][cName] else: self.maxPos = eArgs["maxCnt"] elif "maxSup" in eArgs: if isinstance(eArgs["maxSup"], dict): self.maxPos = int(eArgs["maxSup"][cName] * float(posSize) + 0.99) else: self.maxPos = int(eArgs["maxSup"] * float(posSize) + 0.99) else: self.maxPos = None self.sigma[cName] = self.calSigma(self.minPos, self.minGR, posSize, negSize) # lcmのパラメータ設定と実行 # 頻出パターンがなかった場合、lcm出力ファイルが生成されないので # そのときのために空ファイルを生成しておいく。 lcmout = tf.file() # lcm出力ファイル with open(lcmout, "w") as efile: pass runPara = {} if self.msgoff: runPara["type"] = eArgs["type"] + "IA_" else: runPara["type"] = eArgs["type"] + "IA" #if self.maxPos: #rubyだとif @maxCntなってる(どこにも設定されてないので)動いてないはず if self.maxPos: runPara["U"] = self.maxPos if "minLen" in eArgs: runPara["l"] = str(eArgs["minLen"]) if "maxLen" in eArgs: runPara["u"] = str(eArgs["maxLen"]) runPara["w"] = self.weightFile[cName] runPara["i"] = self.file runPara["sup"] = str(self.sigma[cName]) runPara["o"] = lcmout # lcm実行 #MCMD::msgLog("#{run}") #TAKE::run_lcm(run) #print(self.sigma) #print(runPara) #MCMD::msgLog("output patterns to CSV file ...") extTake.lcm(runPara) pFiles.append(self.temp.file()) transle = tf.file() extTake.lcmtrans(lcmout, "e", transle) f = nm.mdelnull(f="pattern", i=transle) f <<= nm.mcal(c='round(${countN},1)', a="neg") f <<= nm.mcal(c='round(${countP}/%s,1)' % (self.posWeight[cName]), a="pos") f <<= nm.mdelnull(f="pattern") #いる? f <<= nm.msetstr(v=cName, a="class") f <<= nm.msetstr(v=posSize, a="posTotal") f <<= nm.msetstr(v=self.minGR, a="minGR") f <<= nm.mcut(f="class,pid,pattern,size,pos,neg,posTotal,minGR", o=pFiles[-1]) f.run() #s = nutil.mrecount(i=self.file) #MCMD::msgLog("the number of contrast patterns on class `#{cName}' enumerated is #{s}") if self.outtf: # トランザクション毎に出現するパターンを書き出す #MCMD::msgLog("output tid-patterns ...") tFiles.append(self.temp.file()) xxw = tf.file() xxw = nm.mcut(f=self.db.idFN, i=self.db.file) xxw <<= nm.muniq(k=self.db.idFN) xxw <<= nm.mnumber(S=0, a="__tid", q=True) translt = self.temp.file() extTake.lcmtrans(lcmout, "t", translt) f = nm.mjoin(k="__tid", m=xxw, f=self.db.idFN, i=translt) f <<= nm.msetstr(v=cName, a="class") f <<= nm.mcut(f=self.db.idFN + ",class,pid", o=tFiles[-1]) f.run() # クラス別のパターンとtid-pidファイルを統合して最終出力 self.pFile = self.temp.file() self.tFile = self.temp.file() # パターンファイル併合 xxpCat = tf.file() f = nm.mcat(i=",".join(pFiles)) f <<= nm.msortf(f="class,pid") f <<= nm.mnumber(s="class,pid", S=0, a="ppid", o=xxpCat) f.run() # パターンファイル計算 items = self.db.items f = nm.mcut(f="class,ppid:pid,pattern,size,pos,neg,posTotal,minGR", i=xxpCat) f <<= nm.msetstr(v=self.db.traSize, a="total") f <<= nm.mcal(c='${total}-${posTotal}', a="negTotal") # negのトータル件数 f <<= nm.mcal(c='${pos}/${posTotal}', a="support") # サポートの計算 f <<= nm.mcal( c= 'if(${neg}==0,1.797693135e+308,(${pos}/${posTotal})/(${neg}/${negTotal}))', a="growthRate") if "uniform" in eArgs and eArgs["uniform"] == True: f <<= nm.mcal( c='(${pos}/${posTotal})/(${pos}/${posTotal}+(%s-1)*${neg}/${negTotal})' % (self.db.clsSize), a="postProb") else: f <<= nm.mcal(c='${pos}/(${pos}+${neg})', a="postProb") f <<= nm.msel(c='${pos}>=%s&&${growthRate}>=${minGR}' % (self.minPos)) # minSupとminGRによる選択 f <<= nm.mvreplace(vf="pattern", m=items.file, K=items.idFN, f=items.itemFN) f <<= nm.mcut( f="class,pid,pattern,size,pos,neg,posTotal,negTotal,total,support,growthRate,postProb" ) f <<= nm.mvsort(vf="pattern") f <<= nm.msortf(f="class%nr,postProb%nr,pos%nr", o=self.pFile) f.run() # アイテムを包含している冗長なタクソノミを削除 if items.taxonomy: #MCMD::msgLog("reducing redundant rules in terms of taxonomy ...") ##ここは後で zdd = VSOP.constant(0) dt = nm.mcut(i=self.pFile, f="pattern") for fldVal in dt: zdd = zdd + VSOP.itemset(fldVal[0]) zdd = self.reduceTaxo(zdd, self.db.items) xxp1 = tf.file() xxp2 = tf.file() xxp3 = tf.file() zdd.csvout(xxp1) nm.mcut(nfni=True, f="1:pattern", i=xxp1).mvsort(vf="pattern").msortf(f="pattern", o=xxp2).run() nm.msortf(f="pattern", i=self.pFile).mcommon( k="pattern", m=xxp2).msortf(f="class%nr,postProb%nr,pos%nr", o=xxp3).run() shutil.move(xxp3, self.pFile) if self.outtf: # 列挙されたパターンを含むtraのみ選択するためのマスタ xxp4 = nm.mcut(f="class,pid", i=self.pFile) f = nm.mcat(i=",".join(tFiles)) f <<= nm.mjoin(k="class,pid", m=xxpCat, f="ppid") # 全クラス統一pid(ppid)結合 f <<= nm.mcommon(k="class,ppid", K="class,pid", m=xxp4) # 列挙されたパターンの選択 f <<= nm.mcut(f=self.db.idFN + ",class,ppid:pid") f <<= nm.msortf(f=self.db.idFN + ",class,pid", o=self.tFile) f.run()
def run(self): temp = mtemp.Mtemp() ### mtra2gc xxsimgN = temp.file() xxsimgE = temp.file() xxsimgE0 = temp.file() param = {} param["i"] = self.iFile if self.idFN: param["tid"] = self.idFN if self.itemFN: param["item"] = self.itemFN if self.sp1: param["s"] = self.sp1 if self.sp2: param["S"] = self.sp2 ##################### # 異なる向きのconfidenceを列挙するためにsim=C th=0として双方向列挙しておく # 出力データは倍になるが、mfriendsで-directedとすることで元が取れている param["sim"] = "C" param["th"] = "0" param["node_support"] = True if self.numtp: param["num"] = True param["no"] = xxsimgN param["eo"] = xxsimgE0 nt.mtra2gc(**param).run() f = nm.readcsv(xxsimgE0) for i in range(self.filterSize): f <<= nm.mselnum(f=self.filter[i], c="[%s,%s]" % (self.lb[i], self.ub[i])) f <<= nm.writecsv(xxsimgE) f.run() ### mfrirends xxfriends = temp.file() xxfriendE = temp.file() xxw = temp.file() xxf = temp.file() xxff = temp.file() xxor = temp.file() if not os.path.isdir(xxfriends): os.makedirs(xxfriends) col = [["FF000080", "FF888880"], ["0000FF80", "8888FF80"], ["00FF0080", "88FF8880"]] for i in range(len(self.sim)): paramf = {} paramf["ei"] = xxsimgE paramf["ni"] = xxsimgN paramf["ef"] = "node1,node2" paramf["nf"] = "node" paramf["eo"] = xxfriendE paramf["no"] = xxfriends + "/n_" + str(i) paramf["sim"] = self.sim[i] paramf["dir"] = self.dir[i] paramf["rank"] = self.rank[i] paramf["directed"] = True nt.mfriends(**paramf).run() frec2 = nm.mfsort(f="node1,node2", i=xxfriendE) frec2 <<= nm.msummary(k="node1,node2", f=self.sim[i], c="count,mean") frec2 <<= nm.mselstr(f="count", v=2) # node1%0,node2%1,fld,count,mean # a,b,support,2,0.1818181818 # a,d,support,2,0.1818181818 f = nm.mjoin(k="node1,node2", K="node1,node2", m=frec2, f="mean:s1", n=True, i=xxfriendE) f <<= nm.mjoin(k="node2,node1", K="node1,node2", m=frec2, f="mean:s2", n=True) # 1) xxrecs2でsimをjoinできない(s1,s2共にnull)ということは、それは片方向枝なので"F"をつける # 2) 双方向枝a->b,b->aのうちa->bのみ(s1がnullでない)に"W"の印をつける。 # 3) それ以外の枝は"D"として削除 f <<= nm.mcal( c='if(isnull($s{s1}),if(isnull($s{s2}),\"F\",\"D\"),\"W\")', a="dir") f <<= nm.mselstr(f="dir", v="D", r=True) f <<= nm.mcal(c='if($s{dir}==\"W\",$s{s1},$s{%s})' % (self.sim[i]), a="sim") f <<= nm.mchgstr(f="dir:color", c='W:%s,F:%s' % (col[i][0], col[i][1]), A=True) f <<= nm.msetstr(v=[self.sim[i], str(i)], a="simType,simPriority") f <<= nm.mcut(f="simType,simPriority,node1,node2,sim,dir,color", o=xxfriends + "/e_" + str(i)) f.run() # node1%1,node2%0,simType,sim,dir,color # b,a,jaccard,0.3333333333,F,8888FF # j,c,jaccard,0.3333333333,F,8888FF # b,d,jaccard,0.3333333333,F,8888FF # a,e,jaccard,0.5,W,0000FF # d,e,jaccard,0.5,W,0000FF # rule fileの出力 if self.orFile: mmm = nm.mcat(i=xxfriends + "/e_*").muniq(k="node1,node2") nm.mcommon(k="node1,node2", i=xxsimgE, m=mmm, o=self.orFile).run() # マルチ枝の単一化(W優先,パラメータ位置優先) if self.prune: """ # 双方向と片方向に分割 nm.mcat(i=xxfriends+"/e_*").mselstr(f="dir",v="W",o=xxw,u=xxf).run() # 片方向のみの枝を選択 f = nm.mcommon(k="node1,node2",K="node1,node2",r=True,m=xxw,i=xxf) f <<= nm.mcommon(k="node1,node2",K="node2,node1",r=True,m=xxw,o=xxff) f.run() f = nm.mcat(i=xxw+","+xxff).mbest(k="node1,node2",s="dir%r,simPriority%n",o=self.oeFile).run() """ #これだめ fo = nm.mcat(i=xxfriends + "/e_*").mselstr(f="dir", v="W") fu = fo.direction("u") # これは再考 fu <<= nm.mcommon(k="node1,node2", K="node1,node2", r=True, m=fo) fu <<= nm.mcommon(k="node1,node2", K="node2,node1", r=True, m=fo) #f = nm.m2cat() f = nm.mbest(i=[fo, fu], k="node1,node2", s="dir%r,simPriority%n", o=self.oeFile) f.run() else: nm.mcat(i=xxfriends + "/e_*", o=self.oeFile).run() nm.mcat(i=xxfriends + "/n_0", o=self.onFile).run()
def __mkTree(iFile, oFile): temp = mtemp.Mtemp() xxbase0 = temp.file() xxbase1 = temp.file() xxiFile2 = temp.file() xxcheck = temp.file() """ # #{iFile} # key,nam%0,keyNum,num,nv,nc # #2_1,#1_1,4,1,6,1 # #2_1,#1_2,4,2,0.9999999996,1 """ # keyNumとnum項目のuniqリストを作り、お互いの包含関係でrootノードとleafノードを識別する。 f0 = nm.mcut(f="keyNum,num", i=iFile) #{xxiFile1} fk = f0.mcut(f="keyNum").muniq(k="keyNum") #{xxkey} fn = f0.mcut(f="num").muniq(k="num") #{xxnum} # root nodesの選択 fr = nm.mcommon(k="keyNum", K="num", m=fn, i=fk, r=True).mcut(f="keyNum:node0", o=xxbase0) #{xxbase[0]} # leaf nodesの選択 fl = nm.mcommon(k="num", K="keyNum", m=fk, i=fn, r=True).mcut(f="num") #{xxleaf} # leaf nodeの構造を知る必要はないので入力ファイルのnodeからleafを除外 f = nm.mcommon(k="num", m=fl, r=True, i=f0, o=xxiFile2) nm.runs([f, fr]) def _xnjoin(inf, outf, mfile, check, no): f = nm.mnjoin(k="node%d" % (no), K="keyNum", m=mfile, n=True, f="num:node%d" % (no + 1), i=inf, o=outf) fc = nm.mdelnull(i=f, f="node%d" % (no + 1), o=check) return fc i = 0 depth = None inf = xxbase0 outf = xxbase1 ''' # root nodesファイルから親子関係noodeを次々にjoinしていく # xxbase0 : root nodes # node0%0 # 3 # 4 # xxbase1 # node0%0,node1 # 3, # 4,1 # 4,2 # xxbase2 # node0,node1%0,node2 # 3,, # 4,1, # 4,2, # join項目(node2)の非null項目が0件で終了 ''' while True: _xnjoin(inf, outf, xxiFile2, xxcheck, i).run() size = mrecount(i=xxcheck) if size == 0: nm.msortf(f="*", i=outf, o=oFile).run() depth = i + 1 break # swap f_name xxtmp = outf outf = inf inf = xxtmp i += 1 return depth
def __mkNode(key, nf, nl, nv, nc, ni, ef1, ef2, ei, noiso, norm, mapFile, oFile): xbyE = None xbyN = None # edgeファイルからnode情報を生成 # noiso(孤立node排除)の場合は、edgeにあってnodeにないidを省く必要があるので計算する。 if ni == None or (ni != None and noiso): inp = [ nm.mcut(f="%s:key,%s:nam,%s:nl" % (key, ef1, ef1), i=ei), nm.mcut(f="%s:key,%s:nam,%s:nl" % (key, ef2, ef2), i=ei) ] xbyE <<= nm.mnullto(i=inp, f="key", v="##NULL##") xbyE <<= nm.muniq(k="key,nam") xbyE <<= nm.mjoin(k="key", K="nam", m=mapFile, f="num:keyNum") xbyE <<= nm.mjoin(k="nam", K="nam", m=mapFile, f="num,leaf") xbyE <<= nm.msetstr(v=",,,,", a="nv,nc,nlKey,nvKey,ncKey") xbyE <<= nm.mcut( f="key,nam,keyNum,num,nl,nv,nc,leaf,nvKey,ncKey,nlKey") # nodeファイルから作成 if ni: # mcal cat用のlabel項目の作成 label = [] #label項目 if nl: for nml in nl: label.append(nml) else: label.append("$s{%s}" % (nf)) nvcStr = [] if nv: nvcStr.append('%s:nv' % (nv)) if nc: nvcStr.append('%s:nc' % (nc)) """ # map # nam,leaf,num # ##NULL##,,0 # #1_1,,2 # #1_2,,3 # #1_3,,4 # #2_1,,5 # a,1,6 # b,1,7 # c,1,8 """ f = None f <<= nm.mcal(c='cat("_",%s)' % (','.join(label)), a="##label", i=ni) if len(nvcStr) == 0: f <<= nm.mcut(f='%s:key,%s:nam,##label:nl' % (key, nf)) else: f <<= nm.mcut(f='%s:key,%s:nam,##label:nl,%s' % (key, nf, ','.join(nvcStr))) f <<= nm.mnullto(f="key", v="##NULL##") if not nv: f <<= nm.msetstr(v="", a="nv") if not nc: f <<= nm.msetstr(v="", a="nc") f <<= nm.mjoin(k="key", K="nam", m=mapFile, f="num:keyNum") f <<= nm.mjoin(k="nam", K="nam", m=mapFile, f="num,leaf") if norm: #ノードの拡大率は固定 nr = 3 f <<= nm.mnormalize(f="nv:nv2", c="range") f <<= nm.mcal(c='${nv2}*(%s-1)+1' % (nr), a="nvv") f <<= nm.mcut(f="key,nam,keyNum,num,nl,nvv:nv,nc,leaf") #o=#{xxa}" else: f <<= nm.mcut(f="key,nam,keyNum,num,nl,nv,nc,leaf") #o=#{xxa}" xbyN <<= nm.mjoin(k="keyNum", K="num", m=f, f="nl:nlk,nv:nvKey,nc:ncKey", n=True, i=f) xbyN <<= nm.mcal(c='if(isnull($s{nlk}),$s{key},$s{nlk})', a='nlKey') xbyN <<= nm.mcut(f="nlk", r=True) if ni != None and noiso: nm.mcommon(k="key,nam", m=xbyE, i=xbyN, o=oFile).run() elif ni != None: xbyN.writecsv(o=oFile).run() else: xbyE.writecsv(o=oFile).run()
def enumerate(self,eArgs): """ eArgsで与えられた条件で、頻出アイテム集合の列挙を実行する。 :type eArgs: dict :type eArgs['type']: str :type eArgs['minCnt']: int :type eArgs['minSup']: float :type eArgs['maxCnt']: int :type eArgs['maxSup']: float :type eArgs['minLen']: int :type eArgs['maxLen']: int :type eArgs['top']: int :type eArgs['skipTP']: bool【default:False】 :param eArgs: 各種列挙パラメータ :param eArgs['type']: 抽出するアイテム集合の型【'F':頻出集合, 'C':飽和集合, 'M':極大集合】 :param eArgs['minCnt']: 最小サポート(件数) :param eArgs['minSup']: 最小サポート(確率) :param eArgs['maxCnt']: 最大サポート(件数) :param eArgs['maxSup']: 最大サポート(確率) :param eArgs['minLen']: アイテム集合の最小アイテム数(件数) :param eArgs['maxLen']: アイテム集合の最大アイテム数(件数) :param eArgs['top']: 列挙するサポート上位件数(件数) :param eArgs['skipTP']: トランザクションにマッチするパターン(アイテム集合)の出力を行わない。 """ tf=mtemp.Mtemp() self.eArgs=eArgs self.type = eArgs["type"] if "minCnt" in eArgs and eArgs["minCnt"] != None: self.minCnt = int(eArgs["minCnt"]) self.minSup = float(self.minCnt) / float(self.db.traSize) else: self.minSup = float(eArgs["minSup"]) self.minCnt = int(self.minSup * float(self.db.traSize) + 0.99) # 最大サポートと最大サポート件数 self.maxCnt=None if ("maxCnt" in eArgs and eArgs["maxCnt"]!= None) or ( "maxSup" in eArgs and eArgs["maxSup"]!= None): if "maxCnt" in eArgs and eArgs["maxCnt"]!= None: self.maxCnt = int(eArgs["maxCnt"]) self.maxSup = float(self.maxCnt) / float(self.db.traSize) else: self.maxSup = float(eArgs["maxSup"]) self.maxCnt = int(self.maxSup * float(self.db.traSize) + 0.99) params = {} if self.msgoff: params["type"] ="%sIf_"%(self.type) else: params["type"] ="%sIf"%(self.type) if self.maxCnt : params["U"] = str(self.maxCnt) if "minLen" in eArgs and eArgs["minLen"] != None : params["l"] = str(eArgs['minLen']) if "maxLen" in eArgs and eArgs["maxLen"] != None : params["u"] = str(eArgs['maxLen']) # 列挙パターン数上限が指定されれば、一度lcmを実行して最小サポートを得る if "top" in eArgs and eArgs["top"] != None : self.top = eArgs["top"] if self.top and self.top>0 : xxtop = tf.file() import copy top_params = copy.deepcopy(params) top_params["i"] = self.file top_params["sup"] = "1" top_params["K"] = str(self.top) top_params["so"] = xxtop import re top_params["type"] = re.sub('_$', '', top_params["type"] ) extTake.lcm(top_params) with open(xxtop, "r") as rfile: self.minCnt = int(rfile.read().strip()) if self.minCnt<0 : self.minCnt=1 self.skipTP=False if "skipTP" in eArgs: self.skipTP=eArgs["skipTP"] # lcm_seq出力ファイル lcmout = tf.file() # 頻出パターンがなかった場合、lcm出力ファイルが生成されないので # そのときのために空ファイルを生成しておいく。 with open(lcmout, "w") as efile: pass # lcm実行 params["i"] = self.file params["sup"] = str(self.minCnt) params["o"] = lcmout extTake.lcm(params) # caliculate one itemset for lift value xxone= tf.file() tpstr = "FIf_" if self.msgoff else "FIf" extTake.lcm(type=tpstr,i=self.file,sup=1,o=xxone,l=1,u=1) # パターンのサポートを計算しCSV出力する #MCMD::msgLog("output patterns to CSV file ...") xxp0 = tf.file() self.pFile = self.temp.file() items=self.db.items trans0 = self.temp.file() extTake.lcmtrans(lcmout,"p",trans0) f = nm.mdelnull(i=trans0,f="pattern") f <<= nm.mvreplace(vf="pattern",m=items.file,K=items.idFN,f=items.itemFN) f <<= nm.msetstr(v=self.db.traSize,a="total") f <<= nm.mcal(c='${count}/${total}',a="support") f <<= nm.mcut(f="pid,pattern,size,count,total,support") f <<= nm.mvsort(vf="pattern") f <<= nm.msortf(f="pid",o=xxp0) f.run() # xxp0 # pid,count,total,support,pattern # 0,13,13,1,A # 4,6,13,0.4615384615,A B xxp1=tf.file() # taxonomy指定がない場合(2010/11/20追加) if items.taxonomy==None: shutil.move(xxp0,xxp1) # taxonomy指定がある場合 else: #MCMD::msgLog("reducing redundant rules in terms of taxonomy ...") zdd=VSOP.constant(0) fobj = nm.mcut(i=xxp0,f='pattern') for fldVal in fobj: zdd=zdd+VSOP.itemset(fldVal[0]) zdd=self.reduceTaxo(zdd,self.db.items) xxz1=tf.file() xxz2=tf.file() zdd.csvout(xxz1) f0=None f0 <<= nm.mcut(nfni=True,f="1:pattern",i=xxz1) f0 <<= nm.mvsort(vf="pattern") f0 <<= nm.msortf(f="pattern") f=None f <<= nm.msortf(f="pattern",i=xxp0) f <<= nm.mcommon(k="pattern",m=f0) f <<= nm.msortf(f="pid",o=xxp1) f.run() # lift値の計算 transl = tf.file() extTake.lcmtrans(xxone,"p",transl) xxp2 = nm.mdelnull(i=transl,f="pattern") xxp2 <<= nm.mvreplace(vf="pattern",m=items.file,K=items.idFN,f=items.itemFN) xxp2 <<= nm.msortf(f="pattern") xxp3 = nm.mcut(f="pid,pattern",i=xxp1) xxp3 <<= nm.mtra(f="pattern",r=True) xxp3 <<= nm.mjoin(k="pattern",m=xxp2,f="count:c1") xxp3 <<= nm.mcal(c='ln(${c1})',a="c1ln") xxp3 <<= nm.msum(k="pid",f="c1ln") # p3 # pid,pattern,c1,c1ln # 0,A,13,2.564949357 # 1,E,7,1.945910149 #おかしくなる?=>OK f3 = nm.mjoin(k="pid",f="c1ln",i=xxp1,m=xxp3) f3 <<= nm.mcal(c='round(exp(ln(${count})-${c1ln}+(${size}-1)*ln(${total})),0.0001)',a="lift") f3 <<= nm.mcut(f="pid,size,count,total,support,lift,pattern") f3 <<= nm.msortf(f="support%nr",o=self.pFile) f3.run() #self.size = mrecount.mrecount(i=self.file) #MCMD::msgLog("the number of patterns enumerated is #{@size}") if not self.skipTP: # トランザクション毎に出現するシーケンスを書き出す #MCMD::msgLog("output tid-patterns ...") self.tFile = self.temp.file() xxw3i = tf.file() extTake.lcmtrans(lcmout,"t",xxw3i) xxw1 = nm.mcut(f=self.db.idFN,i=self.db.file).muniq(k=self.db.idFN).mnumber(S=0,a="__tid",q=True).msortf(f="__tid") xxw2 = nm.mcut(f="pid",i=self.pFile) xxw3 = nm.mcommon(k="pid",i=xxw3i,m=xxw2).mjoin(k="__tid",m=xxw1,f=self.db.idFN).mcut(f=self.db.idFN+",pid",o=self.tFile) xxw3.run()
def run(self): wf = mtemp.Mtemp() xxpal = wf.file() xxa = wf.file() xxb = wf.file() xxc = wf.file() xxd = wf.file() xxout = wf.file() # ============ # n1,n2,sim # a,b,0.40 # a,c,0.31 # a,d,0.22 # b,c,0.20 # b,d,0.24 # b,e,0.14 # c,d,0.30 # d,e,0.09 xpal = None if self.directed: # 任意の枝a->bのaについて上位rankを選択 xpal <<= nm.mnumber(k=self.ef1, s=self.sim + "%nr", e="skip", S=1, a="##rank", i=self.ei) xpal <<= nm.mselnum(f="##rank", c="[," + str(self.rank) + "]") else: xxa = nm.mfsort(f=[self.ef1, self.ef2], i=self.ei) xxb = nm.mfsort(f=[self.ef2, self.ef1], i=self.ei) xpal <<= nm.muniq(k=[self.ef1, self.ef2], i=[xxa, xxb]) xpal <<= nm.mnumber(k=self.ef1, s=self.sim + "%nr", e="skip", S=1, a="##rank") xpal <<= nm.mselnum(f="##rank", c="[," + str(self.rank) + "]") # 両方向+片方向 xpal1 = None if self.dir == "x": xpal1 <<= nm.mcut(f=[self.ef1, self.ef2, self.sim], i=xpal) # 両方向 elif self.dir == "b": selpara = "$s{%s}==$s{##ef2}" % (self.ef1) # 得られた上位rankグラフからa->b->cを作成し、a==cであれば相思相愛ということ xpal1 <<= nm.mnjoin(k=self.ef2, K=self.ef1, m=xpal, f=self.ef2 + ":##ef2," + self.sim + ":sim2", i=xpal) xpal1 <<= nm.msel(c=selpara) xpal1 <<= nm.mcut(f=[self.ef1, self.ef2, self.sim]) else: selpara = "$s{%s}==$s{##ef2}" % (self.ef1) xxc = None xxc <<= nm.mnjoin(k=self.ef2, K=self.ef1, m=xpal, f=self.ef2 + ":##ef2," + self.sim + ":sim2", i=xpal) xxc <<= nm.msel(c=selpara) xxc <<= nm.mcut(f=[self.ef1, self.ef2]) xpal1 <<= nm.mcut(f=[self.ef1, self.ef2, self.sim], i=xpal) xpal1 <<= nm.mcommon(k=self.ef1 + "," + self.ef2, m=xxc, r=True) runpal = None kpara = "%s,%s" % (self.ef1, self.ef2) if self.udout: runpal <<= nm.mfsort(f=kpara, i=xpal1) runpal <<= nm.mavg(k=kpara, f=self.sim) runpal <<= nm.msortf(f=kpara, o=self.eo) else: runpal <<= nm.msortf(f=kpara, i=xpal1, o=self.eo) runpal.run() if self.ni and self.no: shutil.copyfile(self.ni, self.no)