Пример #1
0
 def testBuildEmptyOptimizer(self):
     optimizer_text_proto = """
 """
     optimizer_proto = optimizer_pb2.Optimizer()
     text_format.Merge(optimizer_text_proto, optimizer_proto)
     with self.assertRaises(ValueError):
         optimizer_builder.build(optimizer_proto)
Пример #2
0
 def testBuildAdamOptimizer(self):
     optimizer_text_proto = """
   adam_optimizer: {
     learning_rate: {
       constant_learning_rate {
         learning_rate: 0.002
       }
     }
   }
   use_moving_average: false
 """
     optimizer_proto = optimizer_pb2.Optimizer()
     text_format.Merge(optimizer_text_proto, optimizer_proto)
     optimizer, _ = optimizer_builder.build(optimizer_proto)
     self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Пример #3
0
 def testBuildMomentumOptimizer(self):
     optimizer_text_proto = """
   momentum_optimizer: {
     learning_rate: {
       constant_learning_rate {
         learning_rate: 0.001
       }
     }
     momentum_optimizer_value: 0.99
   }
   use_moving_average: false
 """
     optimizer_proto = optimizer_pb2.Optimizer()
     text_format.Merge(optimizer_text_proto, optimizer_proto)
     optimizer, _ = optimizer_builder.build(optimizer_proto)
     self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Пример #4
0
 def testBuildMovingAverageOptimizerWithNonDefaultDecay(self):
     optimizer_text_proto = """
   adam_optimizer: {
     learning_rate: {
       constant_learning_rate {
         learning_rate: 0.002
       }
     }
   }
   use_moving_average: True
   moving_average_decay: 0.2
 """
     optimizer_proto = optimizer_pb2.Optimizer()
     text_format.Merge(optimizer_text_proto, optimizer_proto)
     optimizer, _ = optimizer_builder.build(optimizer_proto)
     self.assertTrue(
         isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
     # TODO(rathodv): Find a way to not depend on the private members.
     self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Пример #5
0
 def testBuildRMSPropOptimizer(self):
     optimizer_text_proto = """
   rms_prop_optimizer: {
     learning_rate: {
       exponential_decay_learning_rate {
         initial_learning_rate: 0.004
         decay_steps: 800720
         decay_factor: 0.95
       }
     }
     momentum_optimizer_value: 0.9
     decay: 0.9
     epsilon: 1.0
   }
   use_moving_average: false
 """
     optimizer_proto = optimizer_pb2.Optimizer()
     text_format.Merge(optimizer_text_proto, optimizer_proto)
     optimizer, _ = optimizer_builder.build(optimizer_proto)
     self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Пример #6
0
  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
    detection_model = detection_model_fn(is_training=is_training,
                                         add_summaries=(not use_tpu))
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
      unpad_groundtruth_tensors = True if boxes_shape[1] is not None else False
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
      gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
      gt_masks_list = None
      if fields.InputDataFields.groundtruth_instance_masks in labels:
        gt_masks_list = labels[
            fields.InputDataFields.groundtruth_instance_masks]
      gt_keypoints_list = None
      if fields.InputDataFields.groundtruth_keypoints in labels:
        gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
      if fields.InputDataFields.groundtruth_is_crowd in labels:
        gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
      detection_model.provide_groundtruth(
          groundtruth_boxes_list=gt_boxes_list,
          groundtruth_classes_list=gt_classes_list,
          groundtruth_masks_list=gt_masks_list,
          groundtruth_keypoints_list=gt_keypoints_list,
          groundtruth_weights_list=labels[
              fields.InputDataFields.groundtruth_weights],
          groundtruth_is_crowd_list=gt_is_crowd_list)

    preprocessed_images = features[fields.InputDataFields.image]
    prediction_dict = detection_model.observe(
        preprocessed_images, features[fields.InputDataFields.true_image_shape])
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
      detections = detection_model.postprocess(
          prediction_dict, features[fields.InputDataFields.true_image_shape])

    if mode == tf.estimator.ModeKeys.TRAIN:
      if train_config.fine_tune_checkpoint and hparams.load_pretrained:
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
        asg_map = detection_model.restore_map(
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                asg_map, train_config.fine_tune_checkpoint,
                include_global_step=False))
        if use_tpu:
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
      losses_dict = detection_model.loss(
          prediction_dict, features[fields.InputDataFields.true_image_shape])
      losses = [loss_tensor for loss_tensor in losses_dict.values()]
      if train_config.add_regularization_loss:
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        if regularization_losses:
          regularization_loss = tf.add_n(regularization_losses,
                                         name='regularization_loss')
          losses.append(regularization_loss)
          losses_dict['Loss/regularization_loss'] = regularization_loss
      total_loss = tf.add_n(losses, name='total_loss')
      losses_dict['Loss/total_loss'] = total_loss

      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

    if mode == tf.estimator.ModeKeys.TRAIN:
      if use_tpu:
        training_optimizer = tf.contrib.tpu.CrossShardOptimizer(
            training_optimizer)

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
      if train_config.freeze_variables:
        trainable_variables = tf.contrib.framework.filter_variables(
            tf.trainable_variables(),
            exclude_patterns=train_config.freeze_variables)

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
      train_op = tf.contrib.layers.optimize_loss(
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
              tf.estimator.export.PredictOutput(detections)
      }

    eval_metric_ops = None
    scaffold = None
    if mode == tf.estimator.ModeKeys.EVAL:
      class_agnostic = (fields.DetectionResultFields.detection_classes
                        not in detections)
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic)
      use_original_images = fields.InputDataFields.original_image in features
      eval_images = (
          features[fields.InputDataFields.original_image] if use_original_images
          else features[fields.InputDataFields.image])
      eval_dict = eval_util.result_dict_for_single_example(
          eval_images[0:1],
          features[inputs.HASH_KEY][0],
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
          scale_to_absolute=True)

      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
      img_summary = None
      if not use_tpu and use_original_images:
        detection_and_groundtruth = (
            vis_utils.draw_side_by_side_evaluation_image(
                eval_dict, category_index, max_boxes_to_draw=20,
                min_score_thresh=0.2,
                use_normalized_coordinates=False))
        img_summary = tf.summary.image('Detections_Left_Groundtruth_Right',
                                       detection_and_groundtruth)

      # Eval metrics on a single example.
      eval_metrics = eval_config.metrics_set
      if not eval_metrics:
        eval_metrics = ['coco_detection_metrics']
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
          eval_metrics,
          category_index.values(),
          eval_dict,
          include_metrics_per_category=eval_config.include_metrics_per_category)
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
      if img_summary is not None:
        eval_metric_ops['Detections_Left_Groundtruth_Right'] = (
            img_summary, tf.no_op())
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.iteritems()}

      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
      return tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
          export_outputs=export_outputs,
          scaffold=scaffold)
Пример #7
0
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          graph_hook_fn=None):
    """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
    graph_hook_fn: Optional function that is called after the inference graph is
      built (before optimization). This is helpful to perform additional changes
      to the training graph such as adding FakeQuant ops. The function should
      modify the default graph.

  Raises:
    ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
  """

    detection_model = create_model_fn()
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        if num_clones != 1 and train_config.sync_replicas:
            raise ValueError('In Synchronous SGD mode num_clones must ',
                             'be 1. Found num_clones: {}'.format(num_clones))
        batch_size = train_config.batch_size // num_clones
        if train_config.sync_replicas:
            batch_size //= train_config.replicas_to_aggregate

        with tf.device(deploy_config.inputs_device()):
            input_queue = create_input_queue(
                batch_size, create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

        # Gather initial summaries.
        # TODO(rathodv): See if summaries can be added/extracted from global tf
        # collections so that they don't have to be passed around.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        global_summaries = set([])

        model_fn = functools.partial(_create_losses,
                                     create_model_fn=create_model_fn,
                                     train_config=train_config)
        clones = model_deploy.create_clones(deploy_config, model_fn,
                                            [input_queue])
        first_clone_scope = clones[0].scope

        if graph_hook_fn:
            with tf.device(deploy_config.variables_device()):
                graph_hook_fn()

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):
            training_optimizer, optimizer_summary_vars = optimizer_builder.build(
                train_config.optimizer)
            for var in optimizer_summary_vars:
                tf.summary.scalar(var.op.name, var, family='LearningRate')

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.train.SyncReplicasOptimizer(
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=worker_replicas)
            sync_optimizer = training_optimizer

        with tf.device(deploy_config.optimizer_device()):
            regularization_losses = (
                None if train_config.add_regularization_loss else [])
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones,
                training_optimizer,
                regularization_losses=regularization_losses)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops, name='update_barrier')
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add summaries.
        for model_var in slim.get_model_variables():
            global_summaries.add(
                tf.summary.histogram('ModelVars/' + model_var.op.name,
                                     model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                  loss_tensor))
        global_summaries.add(
            tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:
            if not train_config.fine_tune_checkpoint_type:
                # train_config.from_detection_checkpoint field is deprecated. For
                # backward compatibility, fine_tune_checkpoint_type is set based on
                # from_detection_checkpoint.
                if train_config.from_detection_checkpoint:
                    train_config.fine_tune_checkpoint_type = 'detection'
                else:
                    train_config.fine_tune_checkpoint_type = 'classification'
            var_map = detection_model.restore_map(
                fine_tune_checkpoint_type=train_config.
                fine_tune_checkpoint_type,
                load_all_detection_checkpoint_vars=(
                    train_config.load_all_detection_checkpoint_vars))
            available_var_map = (
                variables_helper.get_variables_available_in_checkpoint(
                    var_map,
                    train_config.fine_tune_checkpoint,
                    include_global_step=False))
            init_saver = tf.train.Saver(available_var_map)

            def initializer_fn(sess):
                init_saver.restore(sess, train_config.fine_tune_checkpoint)

            init_fn = initializer_fn

        slim.learning.train(
            train_tensor,
            logdir=train_dir,
            master=master,
            is_chief=is_chief,
            session_config=session_config,
            startup_delay_steps=train_config.startup_delay_steps,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=(train_config.num_steps
                             if train_config.num_steps else None),
            save_summaries_secs=120,
            sync_optimizer=sync_optimizer,
            saver=saver)