Пример #1
0
def build_meta_arch(predict_full_resolution_masks=False, use_dice_loss=False):
    """Builds the DeepMAC meta architecture."""

    feature_extractor = DummyFeatureExtractor(channel_means=(1.0, 2.0, 3.0),
                                              channel_stds=(10., 20., 30.),
                                              bgr_ordering=False,
                                              num_feature_outputs=2,
                                              stride=4)
    image_resizer_fn = functools.partial(preprocessor.resize_to_range,
                                         min_dimension=128,
                                         max_dimension=128,
                                         pad_to_max_dimesnion=True)

    object_center_params = center_net_meta_arch.ObjectCenterParams(
        classification_loss=losses.WeightedSigmoidClassificationLoss(),
        object_center_loss_weight=1.0,
        min_box_overlap_iou=1.0,
        max_box_predictions=5,
        use_labeled_classes=False)

    if use_dice_loss:
        classification_loss = losses.WeightedDiceClassificationLoss(False)
    else:
        classification_loss = losses.WeightedSigmoidClassificationLoss()

    deepmac_params = deepmac_meta_arch.DeepMACParams(
        classification_loss=classification_loss,
        dim=8,
        task_loss_weight=1.0,
        pixel_embedding_dim=2,
        allowed_masked_classes_ids=[],
        mask_size=16,
        mask_num_subsamples=-1,
        use_xy=True,
        network_type='hourglass10',
        use_instance_embedding=True,
        num_init_channels=8,
        predict_full_resolution_masks=predict_full_resolution_masks,
        postprocess_crop_size=128,
        max_roi_jitter_ratio=0.0,
        roi_jitter_mode='random')

    object_detection_params = center_net_meta_arch.ObjectDetectionParams(
        localization_loss=losses.L1LocalizationLoss(),
        offset_loss_weight=1.0,
        scale_loss_weight=0.1)

    return deepmac_meta_arch.DeepMACMetaArch(
        is_training=True,
        add_summaries=False,
        num_classes=6,
        feature_extractor=feature_extractor,
        object_center_params=object_center_params,
        deepmac_params=deepmac_params,
        object_detection_params=object_detection_params,
        image_resizer_fn=image_resizer_fn)
Пример #2
0
  def testReturnsCorrectLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    loss_op = losses.WeightedSigmoidClassificationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)

    exp_loss = -2 * math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss)
Пример #3
0
  def testHardExamplesProduceLossComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor,
                                             weights=weights), axis=2)
    sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor,
                                                 target_tensor,
                                                 weights=weights), axis=2)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAllClose(order_of_ratio, [[1., 1., 1., 1., 1.]])
Пример #4
0
  def testEasyExamplesProduceSmallLossComparedToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.97)],
                                      [_logit(0.90)],
                                      [_logit(0.73)],
                                      [_logit(0.27)],
                                      [_logit(0.09)],
                                      [_logit(0.03)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(
        anchorwise_output=True, gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=True)
    focal_loss = focal_loss_op(prediction_tensor, target_tensor,
                               weights=weights)
    sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
                                   weights=weights)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAllClose(order_of_ratio, [[1000, 100, 10, 10, 100, 1000]])
Пример #5
0
  def testNonAnchorWiseOutputComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(
        anchorwise_output=False, gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=False)
    focal_loss = focal_loss_op(prediction_tensor, target_tensor,
                               weights=weights)
    sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
                                   weights=weights)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAlmostEqual(order_of_ratio, 1.)
Пример #6
0
  def testIgnorePositiveExampleLossViaAlphaMultiplier(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(
        anchorwise_output=True, gamma=2.0, alpha=0.0)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=True)
    focal_loss = focal_loss_op(prediction_tensor, target_tensor,
                               weights=weights)
    sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
                                   weights=weights)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      self.assertAllClose(focal_loss[0][:3], [0., 0., 0.])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss[0][3:] /
                                                  focal_loss[0][3:])))
      self.assertAllClose(order_of_ratio, [1., 1.])
Пример #7
0
  def testSameAsSigmoidXEntropyWithNoAlphaAndZeroGamma(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(
        anchorwise_output=True, alpha=None, gamma=0.0)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=True)
    focal_loss = focal_loss_op(prediction_tensor, target_tensor,
                               weights=weights)
    sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
                                   weights=weights)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      self.assertAllClose(sigmoid_loss, focal_loss)
Пример #8
0
    def setUp(self):
        """Set up mock SSD model.

    Here we set up a simple mock SSD model that will always predict 4
    detections that happen to always be exactly the anchors that are set up
    in the above MockAnchorGenerator.  Because we let max_detections=5,
    we will also always end up with an extra padded row in the detection
    results.
    """
        is_training = False
        self._num_classes = 1
        conv_hyperparams = {}
        self._conv_hyperparams = conv_hyperparams
        mock_anchor_generator = MockAnchorGenerator2x2()
        mock_box_predictor = test_utils.MockBoxPredictor(
            is_training, self._num_classes)
        mock_class_predictor = test_utils.MockClassPredictor(
            is_training, 7, self._conv_hyperparams, True, 0.5, 5, 0.0, False)
        mock_box_coder = test_utils.MockBoxCoder()
        fake_feature_extractor = FakeSSDFeatureExtractor()
        mock_matcher = test_utils.MockMatcher()
        region_similarity_calculator = sim_calc.IouSimilarity()

        def image_resizer_fn(image):
            return tf.identity(image)

        classification_loss = losses.WeightedSigmoidClassificationLoss(
            anchorwise_output=True)
        localization_loss = losses.WeightedSmoothL1LocalizationLoss(
            anchorwise_output=True)

        classification_loss_in_image_level = losses.WeightedSigmoidClassificationLossInImageLevel(
        )

        non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=-20.0,
            iou_thresh=1.0,
            max_size_per_class=5,
            max_total_size=5)
        classification_loss_weight = 1.0
        localization_loss_weight = 1.0
        classification_loss_in_image_level_weight = 1.0
        normalize_loss_by_num_matches = False

        # This hard example miner is expected to be a no-op.
        hard_example_miner = losses.HardExampleMiner(num_hard_examples=None,
                                                     iou_threshold=1.0)

        self._num_anchors = 4
        self._code_size = 4
        self._model = ssd_meta_arch.SSDMetaArch(
            is_training, mock_anchor_generator, mock_box_predictor,
            mock_class_predictor, mock_box_coder, fake_feature_extractor,
            mock_matcher, region_similarity_calculator, image_resizer_fn,
            non_max_suppression_fn, tf.identity, classification_loss,
            localization_loss, classification_loss_in_image_level,
            classification_loss_weight, localization_loss_weight,
            classification_loss_in_image_level_weight,
            normalize_loss_by_num_matches, hard_example_miner)
Пример #9
0
def build_faster_rcnn_classification_loss(loss_config):
    """Builds a classification loss for Faster RCNN based on the loss config.
  
    Args:
      loss_config: A losses_pb2.ClassificationLoss object.
  
    Returns:
      Loss based on the config.
  
    Raises:
      ValueError: On invalid loss_config.
    """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        return losses.WeightedSigmoidClassificationLoss()
    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            logit_scale=config.logit_scale)

    # By default, Faster RCNN second stage classifier uses Softmax loss
    # with anchor-wise outputs.
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)
Пример #10
0
def build_faster_rcnn_classification_loss(loss_config):
  
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()
  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)
  if loss_type == 'weighted_logits_softmax':
    config = loss_config.weighted_logits_softmax
    return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
        logit_scale=config.logit_scale)
  if loss_type == 'weighted_sigmoid_focal':
    config = loss_config.weighted_sigmoid_focal
    alpha = None
    if config.HasField('alpha'):
      alpha = config.alpha
    return losses.SigmoidFocalClassificationLoss(
        gamma=config.gamma,
        alpha=alpha)

  # By default, Faster RCNN second stage classifier uses Softmax loss
  # with anchor-wise outputs.
  config = loss_config.weighted_softmax
  return losses.WeightedSoftmaxClassificationLoss(
      logit_scale=config.logit_scale)
Пример #11
0
    def _create_model(self,
                      apply_hard_mining=True,
                      normalize_loc_loss_by_codesize=False):
        is_training = False
        num_classes = 1
        mock_anchor_generator = MockAnchorGenerator2x2()
        mock_box_predictor = test_utils.MockBoxPredictor(
            is_training, num_classes)
        mock_box_coder = test_utils.MockBoxCoder()
        fake_feature_extractor = FakeSSDFeatureExtractor()
        mock_matcher = test_utils.MockMatcher()
        region_similarity_calculator = sim_calc.IouSimilarity()
        encode_background_as_zeros = False

        def image_resizer_fn(image):
            return [tf.identity(image), tf.shape(image)]

        classification_loss = losses.WeightedSigmoidClassificationLoss()
        localization_loss = losses.WeightedSmoothL1LocalizationLoss()
        non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=-20.0,
            iou_thresh=1.0,
            max_size_per_class=5,
            max_total_size=5)
        classification_loss_weight = 1.0
        localization_loss_weight = 1.0
        negative_class_weight = 1.0
        normalize_loss_by_num_matches = False

        hard_example_miner = None
        if apply_hard_mining:
            # This hard example miner is expected to be a no-op.
            hard_example_miner = losses.HardExampleMiner(
                num_hard_examples=None, iou_threshold=1.0)

        code_size = 4
        model = ssd_meta_arch.SSDMetaArch(
            is_training,
            mock_anchor_generator,
            mock_box_predictor,
            mock_box_coder,
            fake_feature_extractor,
            mock_matcher,
            region_similarity_calculator,
            encode_background_as_zeros,
            negative_class_weight,
            image_resizer_fn,
            non_max_suppression_fn,
            tf.identity,
            classification_loss,
            localization_loss,
            classification_loss_weight,
            localization_loss_weight,
            normalize_loss_by_num_matches,
            hard_example_miner,
            add_summaries=False,
            normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize)
        return model, num_classes, mock_anchor_generator.num_anchors(
        ), code_size
Пример #12
0
  def testReturnsCorrectLossWithClassIndices(self):
    prediction_tensor = tf.constant([[[-100, 100, -100, 100],
                                      [100, -100, -100, -100],
                                      [100, 0, -100, 100],
                                      [-100, -100, 100, -100]],
                                     [[-100, 0, 100, 100],
                                      [-100, 100, -100, 100],
                                      [100, 100, 100, 100],
                                      [0, 0, -1, 100]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0, 0],
                                  [1, 0, 0, 1],
                                  [1, 0, 0, 0],
                                  [0, 0, 1, 1]],
                                 [[0, 0, 1, 0],
                                  [0, 1, 0, 0],
                                  [1, 1, 1, 0],
                                  [1, 0, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    # Ignores the last class.
    class_indices = tf.constant([0, 1, 2], tf.int32)
    loss_op = losses.WeightedSigmoidClassificationLoss(True)
    loss = loss_op(prediction_tensor, target_tensor, weights=weights,
                   class_indices=class_indices)

    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss)
Пример #13
0
  def testSimilarToSigmoidXEntropyWithHalfAlphaAndZeroGammaUpToAScale(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=0.5, gamma=0.0)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = focal_loss_op(prediction_tensor, target_tensor,
                               weights=weights)
    sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor,
                                   weights=weights)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      self.assertAllClose(sigmoid_loss, focal_loss * 2)
Пример #14
0
def _build_classification_loss(loss_config):
    """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')
    print('hello', loss_type)

    if loss_type == 'weighted_sigmoid':
        return losses.WeightedSigmoidClassificationLoss()

    if loss_type == 'weighted_sigmoid_focal':
        config = loss_config.weighted_sigmoid_focal
        alpha = None
        if config.HasField('alpha'):
            alpha = config.alpha
        return losses.SigmoidFocalClassificationLoss(gamma=config.gamma,
                                                     alpha=alpha)

    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            logit_scale=config.logit_scale)

    if loss_type == 'weighted_logits_softmax':
        config = loss_config.weighted_logits_softmax
        return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
            logit_scale=config.logit_scale)

    if loss_type == 'bootstrapped_sigmoid':
        config = loss_config.bootstrapped_sigmoid
        return losses.BootstrappedSigmoidClassificationLoss(
            alpha=config.alpha,
            bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))

    if loss_type == 'bounded_sigmoid':
        config = loss_config.bounded_sigmoid
        return losses.BoundedSigmoidCrossEntropyLoss()

    if loss_type == 'quadratic_bounded_sigmoid':
        config = loss_config.quadratic_bounded_sigmoid
        return losses.QuadraticBoundedSigmoidCrossEntropyLoss()

    if loss_type == 'soft_target_sigmoid':
        config = loss_config.soft_target_sigmoid
        return losses.SoftTargetSigmoidCrossEntropyLoss()

    raise ValueError('Empty loss config.')
Пример #15
0
def _build_classification_loss(loss_config):
    """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        return losses.WeightedSigmoidClassificationLoss()

    elif loss_type == 'weighted_sigmoid_focal':
        config = loss_config.weighted_sigmoid_focal
        alpha = None
        if config.HasField('alpha'):
            alpha = config.alpha
        return losses.SigmoidFocalClassificationLoss(gamma=config.gamma,
                                                     alpha=alpha)

    elif loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            logit_scale=config.logit_scale)

    elif loss_type == 'weighted_logits_softmax':
        config = loss_config.weighted_logits_softmax
        return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
            logit_scale=config.logit_scale)

    elif loss_type == 'bootstrapped_sigmoid':
        config = loss_config.bootstrapped_sigmoid
        return losses.BootstrappedSigmoidClassificationLoss(
            alpha=config.alpha,
            bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))

    elif loss_type == 'penalty_reduced_logistic_focal_loss':
        config = loss_config.penalty_reduced_logistic_focal_loss
        return losses.PenaltyReducedLogisticFocalLoss(alpha=config.alpha,
                                                      beta=config.beta)

    elif loss_type == 'weighted_dice_classification_loss':
        config = loss_config.weighted_dice_classification_loss
        return losses.WeightedDiceClassificationLoss(
            squared_normalization=config.squared_normalization,
            is_prediction_probability=config.is_prediction_probability)

    else:
        raise ValueError('Empty loss config.')
def _build_classification_loss(loss_config):
    """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        config = loss_config.weighted_sigmoid
        return losses.WeightedSigmoidClassificationLoss(
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'confidence_weighted_sigmoid':
        config = loss_config.confidence_weighted_sigmoid
        return losses.ConfidenceWeightedSigmoidClassificationLoss(
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'weighted_sigmoid_focal':
        config = loss_config.weighted_sigmoid_focal
        alpha = None
        if config.HasField('alpha'):
            alpha = config.alpha
        return losses.SigmoidFocalClassificationLoss(
            anchorwise_output=config.anchorwise_output,
            gamma=config.gamma,
            alpha=alpha)

    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            anchorwise_output=config.anchorwise_output,
            logit_scale=config.logit_scale)

    if loss_type == 'bootstrapped_sigmoid':
        config = loss_config.bootstrapped_sigmoid
        return losses.BootstrappedSigmoidClassificationLoss(
            alpha=config.alpha,
            bootstrap_type=('hard' if config.hard_bootstrap else 'soft'),
            anchorwise_output=config.anchorwise_output)

    raise ValueError('Empty loss config.')
def _build_classification_loss(loss_config):
    """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        config = loss_config.weighted_sigmoid
        return losses.WeightedSigmoidClassificationLoss(
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'bootstrapped_sigmoid':
        config = loss_config.bootstrapped_sigmoid
        return losses.BootstrappedSigmoidClassificationLoss(
            alpha=config.alpha,
            bootstrap_type=('hard' if config.hard_bootstrap else 'soft'),
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'weighted_l2':
        config = loss_config.weighted_l2
        return losses.WeightedL2LocalizationLoss(
            anchorwise_output=config.anchorwise_output)

    if loss_type == 'weighted_smooth_l1':
        config = loss_config.weighted_smooth_l1
        return losses.WeightedSmoothL1LocalizationLoss(
            anchorwise_output=config.anchorwise_output)

    raise ValueError('Empty loss config.')
def build_faster_rcnn_classification_loss(loss_config):
    """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        config = loss_config.weighted_sigmoid
        return losses.WeightedSigmoidClassificationLoss(
            anchorwise_output=config.anchorwise_output)
    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            anchorwise_output=config.anchorwise_output)
    if loss_type == 'weighted_sigmoid_focal':
        config = loss_config.weighted_sigmoid_focal
        alpha = None
        if config.HasField('alpha'):
            alpha = config.alpha
        return losses.SigmoidFocalClassificationLoss(
            anchorwise_output=config.anchorwise_output,
            gamma=config.gamma,
            alpha=alpha)

    # By default, Faster RCNN second stage classifier uses Softmax loss
    # with anchor-wise outputs.
    return losses.WeightedSoftmaxClassificationLoss(anchorwise_output=True)
Пример #19
0
    def __init__(self):
        super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)

        conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
          weight: 0.0003
        }
      }
      initializer {
        truncated_normal_initializer {
          mean: 0.0
          stddev: 0.3
        }
      }
      activation: RELU_6
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto)

        self._class_predictor = class_predictor.ImageLevelConvolutionalClassPredictor(
            is_training=False,
            num_classes=NUMBER_OF_CLASSES_IN_IMAGE_LEVEL,
            conv_hyperparams=hyperparams_proto,
            use_dropout=True,
            dropout_keep_prob=0.5,
            kernel_size=5,
            class_prediction_bias_init=0.0,
            apply_sigmoid_to_scores=False)

        self._classification_loss = losses.WeightedSigmoidClassificationLoss(
            anchorwise_output=True)
        self._localization_loss = losses.WeightedSmoothL1LocalizationLoss(
            anchorwise_output=True)
        self._classification_in_image_level_loss = losses.WeightedSigmoidClassificationLossInImageLevel(
        )
Пример #20
0
def _build_classification_loss(loss_config):
  
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    return losses.WeightedSigmoidClassificationLoss()

  if loss_type == 'weighted_sigmoid_focal':
    config = loss_config.weighted_sigmoid_focal
    alpha = None
    if config.HasField('alpha'):
      alpha = config.alpha
    return losses.SigmoidFocalClassificationLoss(
        gamma=config.gamma,
        alpha=alpha)

  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)

  if loss_type == 'weighted_logits_softmax':
    config = loss_config.weighted_logits_softmax
    return losses.WeightedSoftmaxClassificationAgainstLogitsLoss(
        logit_scale=config.logit_scale)

  if loss_type == 'bootstrapped_sigmoid':
    config = loss_config.bootstrapped_sigmoid
    return losses.BootstrappedSigmoidClassificationLoss(
        alpha=config.alpha,
        bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))

  raise ValueError('Empty loss config.')
Пример #21
0
  def _create_model(self,
                    interleaved=False,
                    apply_hard_mining=True,
                    normalize_loc_loss_by_codesize=False,
                    add_background_class=True,
                    random_example_sampling=False,
                    use_expected_classification_loss_under_sampling=False,
                    min_num_negative_samples=1,
                    desired_negative_sampling_ratio=3,
                    unroll_length=1):
    num_classes = NUM_CLASSES
    is_training = False
    mock_anchor_generator = MockAnchorGenerator2x2()
    mock_box_predictor = test_utils.MockBoxPredictor(is_training, num_classes)
    mock_box_coder = test_utils.MockBoxCoder()
    if interleaved:
      fake_feature_extractor = FakeLSTMInterleavedFeatureExtractor()
    else:
      fake_feature_extractor = FakeLSTMFeatureExtractor()
    mock_matcher = test_utils.MockMatcher()
    region_similarity_calculator = sim_calc.IouSimilarity()
    encode_background_as_zeros = False
    def image_resizer_fn(image):
      return [tf.identity(image), tf.shape(image)]

    classification_loss = losses.WeightedSigmoidClassificationLoss()
    localization_loss = losses.WeightedSmoothL1LocalizationLoss()
    non_max_suppression_fn = functools.partial(
        post_processing.batch_multiclass_non_max_suppression,
        score_thresh=-20.0,
        iou_thresh=1.0,
        max_size_per_class=5,
        max_total_size=MAX_TOTAL_NUM_BOXES)
    classification_loss_weight = 1.0
    localization_loss_weight = 1.0
    negative_class_weight = 1.0
    normalize_loss_by_num_matches = False

    hard_example_miner = None
    if apply_hard_mining:
      # This hard example miner is expected to be a no-op.
      hard_example_miner = losses.HardExampleMiner(
          num_hard_examples=None,
          iou_threshold=1.0)

    target_assigner_instance = target_assigner.TargetAssigner(
        region_similarity_calculator,
        mock_matcher,
        mock_box_coder,
        negative_class_weight=negative_class_weight)

    code_size = 4
    model = lstm_ssd_meta_arch.LSTMSSDMetaArch(
        is_training=is_training,
        anchor_generator=mock_anchor_generator,
        box_predictor=mock_box_predictor,
        box_coder=mock_box_coder,
        feature_extractor=fake_feature_extractor,
        encode_background_as_zeros=encode_background_as_zeros,
        image_resizer_fn=image_resizer_fn,
        non_max_suppression_fn=non_max_suppression_fn,
        score_conversion_fn=tf.identity,
        classification_loss=classification_loss,
        localization_loss=localization_loss,
        classification_loss_weight=classification_loss_weight,
        localization_loss_weight=localization_loss_weight,
        normalize_loss_by_num_matches=normalize_loss_by_num_matches,
        hard_example_miner=hard_example_miner,
        unroll_length=unroll_length,
        target_assigner_instance=target_assigner_instance,
        add_summaries=False)
    return model, num_classes, mock_anchor_generator.num_anchors(), code_size
Пример #22
0
 def __init__(self):
     super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
     self._classification_loss = losses.WeightedSigmoidClassificationLoss()
     self._localization_loss = losses.WeightedSmoothL1LocalizationLoss()
Пример #23
0
def build_meta_arch(**override_params):
    """Builds the DeepMAC meta architecture."""

    params = dict(predict_full_resolution_masks=False,
                  use_instance_embedding=True,
                  mask_num_subsamples=-1,
                  network_type='hourglass10',
                  use_xy=True,
                  pixel_embedding_dim=2,
                  dice_loss_prediction_probability=False,
                  color_consistency_threshold=0.5,
                  use_dice_loss=False,
                  box_consistency_loss_normalize='normalize_auto',
                  box_consistency_tightness=False,
                  task_loss_weight=1.0,
                  color_consistency_loss_weight=1.0,
                  box_consistency_loss_weight=1.0,
                  num_init_channels=8,
                  dim=8,
                  allowed_masked_classes_ids=[],
                  mask_size=16,
                  postprocess_crop_size=128,
                  max_roi_jitter_ratio=0.0,
                  roi_jitter_mode='random',
                  color_consistency_dilation=2,
                  color_consistency_warmup_steps=0,
                  color_consistency_warmup_start=0)

    params.update(override_params)

    feature_extractor = DummyFeatureExtractor(channel_means=(1.0, 2.0, 3.0),
                                              channel_stds=(10., 20., 30.),
                                              bgr_ordering=False,
                                              num_feature_outputs=2,
                                              stride=4)
    image_resizer_fn = functools.partial(preprocessor.resize_to_range,
                                         min_dimension=128,
                                         max_dimension=128,
                                         pad_to_max_dimesnion=True)

    object_center_params = center_net_meta_arch.ObjectCenterParams(
        classification_loss=losses.WeightedSigmoidClassificationLoss(),
        object_center_loss_weight=1.0,
        min_box_overlap_iou=1.0,
        max_box_predictions=5,
        use_labeled_classes=False)

    use_dice_loss = params.pop('use_dice_loss')
    dice_loss_prediction_prob = params.pop('dice_loss_prediction_probability')
    if use_dice_loss:
        classification_loss = losses.WeightedDiceClassificationLoss(
            squared_normalization=False,
            is_prediction_probability=dice_loss_prediction_prob)
    else:
        classification_loss = losses.WeightedSigmoidClassificationLoss()

    deepmac_params = deepmac_meta_arch.DeepMACParams(
        classification_loss=classification_loss, **params)

    object_detection_params = center_net_meta_arch.ObjectDetectionParams(
        localization_loss=losses.L1LocalizationLoss(),
        offset_loss_weight=1.0,
        scale_loss_weight=0.1)

    return deepmac_meta_arch.DeepMACMetaArch(
        is_training=True,
        add_summaries=False,
        num_classes=6,
        feature_extractor=feature_extractor,
        object_center_params=object_center_params,
        deepmac_params=deepmac_params,
        object_detection_params=object_detection_params,
        image_resizer_fn=image_resizer_fn)
Пример #24
0
    def _build_model(self,
                     is_training,
                     number_of_stages,
                     second_stage_batch_size,
                     first_stage_max_proposals=8,
                     num_classes=2,
                     hard_mining=False,
                     softmax_second_stage_classification_loss=True,
                     predict_masks=False,
                     pad_to_max_dimension=None,
                     masks_are_class_agnostic=False,
                     use_matmul_crop_and_resize=False,
                     clip_anchors_to_image=False,
                     use_matmul_gather_in_matcher=False,
                     use_static_shapes=False,
                     calibration_mapping_value=None,
                     share_box_across_classes=False,
                     return_raw_detections_during_predict=False):
        use_keras = tf_version.is_tf2()

        def image_resizer_fn(image, masks=None):
            """Fake image resizer function."""
            resized_inputs = []
            resized_image = tf.identity(image)
            if pad_to_max_dimension is not None:
                resized_image = tf.image.pad_to_bounding_box(
                    image, 0, 0, pad_to_max_dimension, pad_to_max_dimension)
            resized_inputs.append(resized_image)
            if masks is not None:
                resized_masks = tf.identity(masks)
                if pad_to_max_dimension is not None:
                    resized_masks = tf.image.pad_to_bounding_box(
                        tf.transpose(masks, [1, 2, 0]), 0, 0,
                        pad_to_max_dimension, pad_to_max_dimension)
                    resized_masks = tf.transpose(resized_masks, [2, 0, 1])
                resized_inputs.append(resized_masks)
            resized_inputs.append(tf.shape(image))
            return resized_inputs

        # anchors in this test are designed so that a subset of anchors are inside
        # the image and a subset of anchors are outside.
        first_stage_anchor_scales = (0.001, 0.005, 0.1)
        first_stage_anchor_aspect_ratios = (0.5, 1.0, 2.0)
        first_stage_anchor_strides = (1, 1)
        first_stage_anchor_generator = grid_anchor_generator.GridAnchorGenerator(
            first_stage_anchor_scales,
            first_stage_anchor_aspect_ratios,
            anchor_stride=first_stage_anchor_strides)
        first_stage_target_assigner = target_assigner.create_target_assigner(
            'FasterRCNN',
            'proposal',
            use_matmul_gather=use_matmul_gather_in_matcher)

        if use_keras:
            fake_feature_extractor = FakeFasterRCNNKerasFeatureExtractor()
        else:
            fake_feature_extractor = FakeFasterRCNNFeatureExtractor()

        first_stage_box_predictor_hyperparams_text_proto = """
      op: CONV
      activation: RELU
      regularizer {
        l2_regularizer {
          weight: 0.00004
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.03
        }
      }
    """
        if use_keras:
            first_stage_box_predictor_arg_scope_fn = (
                self._build_keras_layer_hyperparams(
                    first_stage_box_predictor_hyperparams_text_proto))
        else:
            first_stage_box_predictor_arg_scope_fn = (
                self._build_arg_scope_with_hyperparams(
                    first_stage_box_predictor_hyperparams_text_proto,
                    is_training))

        first_stage_box_predictor_kernel_size = 3
        first_stage_atrous_rate = 1
        first_stage_box_predictor_depth = 512
        first_stage_minibatch_size = 3
        first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
            positive_fraction=0.5, is_static=use_static_shapes)

        first_stage_nms_score_threshold = -1.0
        first_stage_nms_iou_threshold = 1.0
        first_stage_max_proposals = first_stage_max_proposals
        first_stage_non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=first_stage_nms_score_threshold,
            iou_thresh=first_stage_nms_iou_threshold,
            max_size_per_class=first_stage_max_proposals,
            max_total_size=first_stage_max_proposals,
            use_static_shapes=use_static_shapes)

        first_stage_localization_loss_weight = 1.0
        first_stage_objectness_loss_weight = 1.0

        post_processing_config = post_processing_pb2.PostProcessing()
        post_processing_text_proto = """
      score_converter: IDENTITY
      batch_non_max_suppression {
        score_threshold: -20.0
        iou_threshold: 1.0
        max_detections_per_class: 5
        max_total_detections: 5
        use_static_shapes: """ + '{}'.format(use_static_shapes) + """
      }
    """
        if calibration_mapping_value:
            calibration_text_proto = """
      calibration_config {
        function_approximation {
          x_y_pairs {
            x_y_pair {
              x: 0.0
              y: %f
            }
            x_y_pair {
              x: 1.0
              y: %f
              }}}}""" % (calibration_mapping_value, calibration_mapping_value)
            post_processing_text_proto = (post_processing_text_proto + ' ' +
                                          calibration_text_proto)
        text_format.Merge(post_processing_text_proto, post_processing_config)
        second_stage_non_max_suppression_fn, second_stage_score_conversion_fn = (
            post_processing_builder.build(post_processing_config))

        second_stage_target_assigner = target_assigner.create_target_assigner(
            'FasterRCNN',
            'detection',
            use_matmul_gather=use_matmul_gather_in_matcher)
        second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
            positive_fraction=1.0, is_static=use_static_shapes)

        second_stage_localization_loss_weight = 1.0
        second_stage_classification_loss_weight = 1.0
        if softmax_second_stage_classification_loss:
            second_stage_classification_loss = (
                losses.WeightedSoftmaxClassificationLoss())
        else:
            second_stage_classification_loss = (
                losses.WeightedSigmoidClassificationLoss())

        hard_example_miner = None
        if hard_mining:
            hard_example_miner = losses.HardExampleMiner(
                num_hard_examples=1,
                iou_threshold=0.99,
                loss_type='both',
                cls_loss_weight=second_stage_classification_loss_weight,
                loc_loss_weight=second_stage_localization_loss_weight,
                max_negatives_per_positive=None)

        crop_and_resize_fn = (ops.matmul_crop_and_resize
                              if use_matmul_crop_and_resize else
                              ops.native_crop_and_resize)
        common_kwargs = {
            'is_training':
            is_training,
            'num_classes':
            num_classes,
            'image_resizer_fn':
            image_resizer_fn,
            'feature_extractor':
            fake_feature_extractor,
            'number_of_stages':
            number_of_stages,
            'first_stage_anchor_generator':
            first_stage_anchor_generator,
            'first_stage_target_assigner':
            first_stage_target_assigner,
            'first_stage_atrous_rate':
            first_stage_atrous_rate,
            'first_stage_box_predictor_arg_scope_fn':
            first_stage_box_predictor_arg_scope_fn,
            'first_stage_box_predictor_kernel_size':
            first_stage_box_predictor_kernel_size,
            'first_stage_box_predictor_depth':
            first_stage_box_predictor_depth,
            'first_stage_minibatch_size':
            first_stage_minibatch_size,
            'first_stage_sampler':
            first_stage_sampler,
            'first_stage_non_max_suppression_fn':
            first_stage_non_max_suppression_fn,
            'first_stage_max_proposals':
            first_stage_max_proposals,
            'first_stage_localization_loss_weight':
            first_stage_localization_loss_weight,
            'first_stage_objectness_loss_weight':
            first_stage_objectness_loss_weight,
            'second_stage_target_assigner':
            second_stage_target_assigner,
            'second_stage_batch_size':
            second_stage_batch_size,
            'second_stage_sampler':
            second_stage_sampler,
            'second_stage_non_max_suppression_fn':
            second_stage_non_max_suppression_fn,
            'second_stage_score_conversion_fn':
            second_stage_score_conversion_fn,
            'second_stage_localization_loss_weight':
            second_stage_localization_loss_weight,
            'second_stage_classification_loss_weight':
            second_stage_classification_loss_weight,
            'second_stage_classification_loss':
            second_stage_classification_loss,
            'hard_example_miner':
            hard_example_miner,
            'crop_and_resize_fn':
            crop_and_resize_fn,
            'clip_anchors_to_image':
            clip_anchors_to_image,
            'use_static_shapes':
            use_static_shapes,
            'resize_masks':
            True,
            'return_raw_detections_during_predict':
            return_raw_detections_during_predict
        }

        return self._get_model(
            self._get_second_stage_box_predictor(
                num_classes=num_classes,
                is_training=is_training,
                use_keras=use_keras,
                predict_masks=predict_masks,
                masks_are_class_agnostic=masks_are_class_agnostic,
                share_box_across_classes=share_box_across_classes),
            **common_kwargs)
    def _create_model(self,
                      model_fn=ssd_meta_arch.SSDMetaArch,
                      apply_hard_mining=True,
                      normalize_loc_loss_by_codesize=False,
                      add_background_class=True,
                      random_example_sampling=False,
                      weight_regression_loss_by_score=False,
                      use_expected_classification_loss_under_sampling=False,
                      min_num_negative_samples=1,
                      desired_negative_sampling_ratio=3,
                      use_keras=False,
                      predict_mask=False,
                      use_static_shapes=False,
                      nms_max_size_per_class=5):
        is_training = False
        num_classes = 1
        mock_anchor_generator = MockAnchorGenerator2x2()
        if use_keras:
            mock_box_predictor = test_utils.MockKerasBoxPredictor(
                is_training,
                num_classes,
                add_background_class=add_background_class,
                predict_mask=predict_mask)
        else:
            mock_box_predictor = test_utils.MockBoxPredictor(
                is_training,
                num_classes,
                add_background_class=add_background_class,
                predict_mask=predict_mask)
        mock_box_coder = test_utils.MockBoxCoder()
        if use_keras:
            fake_feature_extractor = FakeSSDKerasFeatureExtractor()
        else:
            fake_feature_extractor = FakeSSDFeatureExtractor()
        mock_matcher = test_utils.MockMatcher()
        region_similarity_calculator = sim_calc.IouSimilarity()
        encode_background_as_zeros = False

        def image_resizer_fn(image):
            return [tf.identity(image), tf.shape(image)]

        classification_loss = losses.WeightedSigmoidClassificationLoss()
        localization_loss = losses.WeightedSmoothL1LocalizationLoss()
        non_max_suppression_fn = functools.partial(
            post_processing.batch_multiclass_non_max_suppression,
            score_thresh=-20.0,
            iou_thresh=1.0,
            max_size_per_class=nms_max_size_per_class,
            max_total_size=nms_max_size_per_class,
            use_static_shapes=use_static_shapes)
        classification_loss_weight = 1.0
        localization_loss_weight = 1.0
        negative_class_weight = 1.0
        normalize_loss_by_num_matches = False

        hard_example_miner = None
        if apply_hard_mining:
            # This hard example miner is expected to be a no-op.
            hard_example_miner = losses.HardExampleMiner(
                num_hard_examples=None, iou_threshold=1.0)

        random_example_sampler = None
        if random_example_sampling:
            random_example_sampler = sampler.BalancedPositiveNegativeSampler(
                positive_fraction=0.5)

        target_assigner_instance = target_assigner.TargetAssigner(
            region_similarity_calculator,
            mock_matcher,
            mock_box_coder,
            negative_class_weight=negative_class_weight,
            weight_regression_loss_by_score=weight_regression_loss_by_score)

        expected_classification_loss_under_sampling = None
        if use_expected_classification_loss_under_sampling:
            expected_classification_loss_under_sampling = functools.partial(
                ops.expected_classification_loss_under_sampling,
                min_num_negative_samples=min_num_negative_samples,
                desired_negative_sampling_ratio=desired_negative_sampling_ratio
            )

        code_size = 4
        model = model_fn(
            is_training=is_training,
            anchor_generator=mock_anchor_generator,
            box_predictor=mock_box_predictor,
            box_coder=mock_box_coder,
            feature_extractor=fake_feature_extractor,
            encode_background_as_zeros=encode_background_as_zeros,
            image_resizer_fn=image_resizer_fn,
            non_max_suppression_fn=non_max_suppression_fn,
            score_conversion_fn=tf.identity,
            classification_loss=classification_loss,
            localization_loss=localization_loss,
            classification_loss_weight=classification_loss_weight,
            localization_loss_weight=localization_loss_weight,
            normalize_loss_by_num_matches=normalize_loss_by_num_matches,
            hard_example_miner=hard_example_miner,
            target_assigner_instance=target_assigner_instance,
            add_summaries=False,
            normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
            freeze_batchnorm=False,
            inplace_batchnorm_update=False,
            add_background_class=add_background_class,
            random_example_sampler=random_example_sampler,
            expected_classification_loss_under_sampling=
            expected_classification_loss_under_sampling)
        return model, num_classes, mock_anchor_generator.num_anchors(
        ), code_size
Пример #26
0
  def _create_model(
      self,
      model_fn=ssd_meta_arch.SSDMetaArch,
      apply_hard_mining=True,
      normalize_loc_loss_by_codesize=False,
      add_background_class=True,
      random_example_sampling=False,
      expected_loss_weights=model_pb2.DetectionModel().ssd.loss.NONE,
      min_num_negative_samples=1,
      desired_negative_sampling_ratio=3,
      use_keras=False,
      predict_mask=False,
      use_static_shapes=False,
      nms_max_size_per_class=5,
      calibration_mapping_value=None,
      return_raw_detections_during_predict=False):
    is_training = False
    num_classes = 1
    mock_anchor_generator = MockAnchorGenerator2x2()
    if use_keras:
      mock_box_predictor = test_utils.MockKerasBoxPredictor(
          is_training, num_classes, add_background_class=add_background_class)
    else:
      mock_box_predictor = test_utils.MockBoxPredictor(
          is_training, num_classes, add_background_class=add_background_class)
    mock_box_coder = test_utils.MockBoxCoder()
    if use_keras:
      fake_feature_extractor = FakeSSDKerasFeatureExtractor()
    else:
      fake_feature_extractor = FakeSSDFeatureExtractor()
    mock_matcher = test_utils.MockMatcher()
    region_similarity_calculator = sim_calc.IouSimilarity()
    encode_background_as_zeros = False

    def image_resizer_fn(image):
      return [tf.identity(image), tf.shape(image)]

    classification_loss = losses.WeightedSigmoidClassificationLoss()
    localization_loss = losses.WeightedSmoothL1LocalizationLoss()
    non_max_suppression_fn = functools.partial(
        post_processing.batch_multiclass_non_max_suppression,
        score_thresh=-20.0,
        iou_thresh=1.0,
        max_size_per_class=nms_max_size_per_class,
        max_total_size=nms_max_size_per_class,
        use_static_shapes=use_static_shapes)
    score_conversion_fn = tf.identity
    calibration_config = calibration_pb2.CalibrationConfig()
    if calibration_mapping_value:
      calibration_text_proto = """
      function_approximation {
        x_y_pairs {
            x_y_pair {
              x: 0.0
              y: %f
            }
            x_y_pair {
              x: 1.0
              y: %f
            }}}""" % (calibration_mapping_value, calibration_mapping_value)
      text_format.Merge(calibration_text_proto, calibration_config)
      score_conversion_fn = (
          post_processing_builder._build_calibrated_score_converter(  # pylint: disable=protected-access
              tf.identity, calibration_config))
    classification_loss_weight = 1.0
    localization_loss_weight = 1.0
    negative_class_weight = 1.0
    normalize_loss_by_num_matches = False

    hard_example_miner = None
    if apply_hard_mining:
      # This hard example miner is expected to be a no-op.
      hard_example_miner = losses.HardExampleMiner(
          num_hard_examples=None, iou_threshold=1.0)

    random_example_sampler = None
    if random_example_sampling:
      random_example_sampler = sampler.BalancedPositiveNegativeSampler(
          positive_fraction=0.5)

    target_assigner_instance = target_assigner.TargetAssigner(
        region_similarity_calculator,
        mock_matcher,
        mock_box_coder,
        negative_class_weight=negative_class_weight)

    model_config = model_pb2.DetectionModel()
    if expected_loss_weights == model_config.ssd.loss.NONE:
      expected_loss_weights_fn = None
    else:
      raise ValueError('Not a valid value for expected_loss_weights.')

    code_size = 4

    kwargs = {}
    if predict_mask:
      kwargs.update({
          'mask_prediction_fn': test_utils.MockMaskHead(num_classes=1).predict,
      })

    model = model_fn(
        is_training=is_training,
        anchor_generator=mock_anchor_generator,
        box_predictor=mock_box_predictor,
        box_coder=mock_box_coder,
        feature_extractor=fake_feature_extractor,
        encode_background_as_zeros=encode_background_as_zeros,
        image_resizer_fn=image_resizer_fn,
        non_max_suppression_fn=non_max_suppression_fn,
        score_conversion_fn=score_conversion_fn,
        classification_loss=classification_loss,
        localization_loss=localization_loss,
        classification_loss_weight=classification_loss_weight,
        localization_loss_weight=localization_loss_weight,
        normalize_loss_by_num_matches=normalize_loss_by_num_matches,
        hard_example_miner=hard_example_miner,
        target_assigner_instance=target_assigner_instance,
        add_summaries=False,
        normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        add_background_class=add_background_class,
        random_example_sampler=random_example_sampler,
        expected_loss_weights_fn=expected_loss_weights_fn,
        return_raw_detections_during_predict=(
            return_raw_detections_during_predict),
        **kwargs)
    return model, num_classes, mock_anchor_generator.num_anchors(), code_size