Пример #1
0
 def testBuildNonExistingLayerLargeModel(self):
   """Tests that the model is built correctly without unnecessary layers."""
   inputs = tf.random_uniform((5, 331, 331, 3))
   tf.train.create_global_step()
   with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
     pnasnet.build_pnasnet_large(inputs, 1000)
   vars_names = [x.op.name for x in tf.trainable_variables()]
   self.assertIn('cell_stem_0/1x1/weights', vars_names)
   self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
Пример #2
0
 def testBuildPreLogitsLargeModel(self):
   batch_size = 5
   height, width = 331, 331
   num_classes = None
   inputs = tf.random_uniform((batch_size, height, width, 3))
   tf.train.create_global_step()
   with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
     net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
   self.assertFalse('AuxLogits' in end_points)
   self.assertFalse('Predictions' in end_points)
   self.assertTrue(net.op.name.startswith('final_layer/Mean'))
   self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320])
Пример #3
0
 def testOverrideHParamsLargeModel(self):
   batch_size = 5
   height, width = 331, 331
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   tf.train.create_global_step()
   config = pnasnet.large_imagenet_config()
   config.set_hparam('data_format', 'NCHW')
   with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
     _, end_points = pnasnet.build_pnasnet_large(
         inputs, num_classes, config=config)
   self.assertListEqual(
       end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])
  def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    Extracts features using the first half of the PNASNet network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
      end_points: A dictionary mapping feature extractor tensor names to tensors

    Raises:
      ValueError: If the created network is missing the required activation.
    """
    del scope

    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())

    with slim.arg_scope(pnasnet_large_arg_scope_for_detection(
        is_batch_norm_training=self._train_batch_norm)):
      with arg_scope([slim.conv2d,
                      slim.batch_norm,
                      slim.separable_conv2d],
                     reuse=self._reuse_weights):
        _, end_points = pnasnet.build_pnasnet_large(
            preprocessed_inputs, num_classes=None,
            is_training=self._is_training,
            final_endpoint='Cell_7')

    # Note that both 'Cell_6' and 'Cell_7' have equal depth = 2160.
    # Cell_7 is the last cell before second reduction.
    rpn_feature_map = tf.concat([end_points['Cell_6'],
                                 end_points['Cell_7']], 3)

    # pnasnet.py does not maintain the batch size in the first dimension.
    # This work around permits us retaining the batch for below.
    batch = preprocessed_inputs.get_shape().as_list()[0]
    shape_without_batch = rpn_feature_map.get_shape().as_list()[1:]
    rpn_feature_map_shape = [batch] + shape_without_batch
    rpn_feature_map.set_shape(rpn_feature_map_shape)

    return rpn_feature_map, end_points
Пример #5
0
 def testNoAuxHeadLargeModel(self):
   batch_size = 5
   height, width = 331, 331
   num_classes = 1000
   for use_aux_head in (True, False):
     tf.reset_default_graph()
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.large_imagenet_config()
     config.set_hparam('use_aux_head', int(use_aux_head))
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
       _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
                                                   config=config)
     self.assertEqual('AuxLogits' in end_points, use_aux_head)
Пример #6
0
 def testBuildLogitsLargeModel(self):
   batch_size = 5
   height, width = 331, 331
   num_classes = 1000
   inputs = tf.random_uniform((batch_size, height, width, 3))
   tf.train.create_global_step()
   with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
     logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
   auxlogits = end_points['AuxLogits']
   predictions = end_points['Predictions']
   self.assertListEqual(auxlogits.get_shape().as_list(),
                        [batch_size, num_classes])
   self.assertListEqual(logits.get_shape().as_list(),
                        [batch_size, num_classes])
   self.assertListEqual(predictions.get_shape().as_list(),
                        [batch_size, num_classes])
Пример #7
0
    def extract_features(self, preprocessed_inputs):
        """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """

        feature_map_layout = {
            'from_layer': ['Cell_7', 'Cell_11', '', '', '', ''],
            'layer_depth': [-1, -1, 512, 256, 256, 128],
            'use_explicit_padding': self._use_explicit_padding,
            'use_depthwise': self._use_depthwise,
        }

        with slim.arg_scope(
                pnasnet_large_arg_scope_for_detection(
                    is_batch_norm_training=self._is_training)):
            with slim.arg_scope(
                [slim.conv2d, slim.batch_norm, slim.separable_conv2d],
                    reuse=self._reuse_weights):
                with (slim.arg_scope(self._conv_hyperparams_fn())
                      if self._override_base_feature_extractor_hyperparams else
                      context_manager.IdentityContextManager()):
                    _, image_features = pnasnet.build_pnasnet_large(
                        ops.pad_to_multiple(preprocessed_inputs,
                                            self._pad_to_multiple),
                        num_classes=None,
                        is_training=self._is_training,
                        final_endpoint='Cell_11')
        with tf.variable_scope('SSD_feature_maps', reuse=self._reuse_weights):
            with slim.arg_scope(self._conv_hyperparams_fn()):
                feature_maps = feature_map_generators.multi_resolution_feature_maps(
                    feature_map_layout=feature_map_layout,
                    depth_multiplier=self._depth_multiplier,
                    min_depth=self._min_depth,
                    insert_1x1_conv=True,
                    image_features=image_features)

        return feature_maps.values()
Пример #8
0
  def testAllEndPointsShapesLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)

    endpoints_shapes = {'Stem': [batch_size, 42, 42, 540],
                        'Cell_0': [batch_size, 42, 42, 1080],
                        'Cell_1': [batch_size, 42, 42, 1080],
                        'Cell_2': [batch_size, 42, 42, 1080],
                        'Cell_3': [batch_size, 42, 42, 1080],
                        'Cell_4': [batch_size, 21, 21, 2160],
                        'Cell_5': [batch_size, 21, 21, 2160],
                        'Cell_6': [batch_size, 21, 21, 2160],
                        'Cell_7': [batch_size, 21, 21, 2160],
                        'Cell_8': [batch_size, 11, 11, 4320],
                        'Cell_9': [batch_size, 11, 11, 4320],
                        'Cell_10': [batch_size, 11, 11, 4320],
                        'Cell_11': [batch_size, 11, 11, 4320],
                        'global_pool': [batch_size, 4320],
                        # Logits and predictions
                        'AuxLogits': [batch_size, 1000],
                        'Predictions': [batch_size, 1000],
                        'Logits': [batch_size, 1000],
                       }
    self.assertEqual(len(end_points), 17)
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      tf.logging.info('Endpoint name: {}'.format(endpoint_name))
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertIn(endpoint_name, end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)