ha = ha+1 if(s): sa = sa+1 if(v): va = va+1 hue = hue / ha sat = sat / sa val = val / va #ambil ukuran panjang = 0 lebar = 0 float(panjang) float(lebar) panjang, lebar = size.cari_size(hasil) print('Hasil1/%d/%d_%d.jpg' %(i, i, j)) name = 'Hasil1/%d/%d_%d.jpg' %(i, i, j) myTomat = '%s, %d, %d, %d, %d, %d, %d, %d, %s' %(name, red, green, blue, hue, sat, val, jumlah_frek, panjang) myTomat = myTomat + '\n' #print(myTomat) csv.write(myTomat) #cv2.imwrite(name, hasil) if(j == 15) : i = i + 1 j = 0
def imageProcess(filename): os.chdir('/home/ryanazrian/Desktop/PCD/Project/code/CodeFix/WEB') img = cv2.imread('temp/' + filename) red = 0 blue = 0 green = 0 hue = 0 sat = 0 val = 0 ha = 0 sa = 0 va = 0 re = 0 gr = 0 bl = 0 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) gray = cv2.cvtColor(hsv, cv2.COLOR_RGB2GRAY) #img = cv2.resize(img, (0, 0), fx=0.1, fy=0.1) #b, g, r = cv2.split() #b = libs.treshold(libs.substract(r, g)) ret, b = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) dilate = cv2.dilate(b, kernel, iterations=10) final = cv2.erode(dilate, kernel, iterations=10) hasil = libs.subrgbgray(img, final) row, col, ch = hasil.shape for x in range(0, row): for y in range(0, col): b, g, r = hasil[x, y] if (b & g & r): red = red + r green = green + g blue = blue + b if (b): bl = bl + 1 if (r): re = re + 1 if (g): gr = gr + 1 red = red / re green = green / gr blue = blue / bl jumlah_frek = re + gr + bl HSV = cv2.cvtColor(hasil, cv2.COLOR_RGB2HSV) row, col, ch = HSV.shape for x in range(0, row): for y in range(0, col): h, s, v = HSV[x, y] if (h & s & v): hue = hue + h sat = sat + s val = val + v if (h): ha = ha + 1 if (s): sa = sa + 1 if (v): va = va + 1 hue = hue / ha sat = sat / sa val = val / va #ambil ukuran panjang = 0 lebar = 0 float(panjang) float(lebar) panjang, lebar = size.cari_size(hasil) myTomat = '%d, %d, %d, %d, %d, %d, %d, %s' % (red, green, blue, hue, sat, val, jumlah_frek, panjang) testMatang = [[red, green, blue, hue, sat, val]] testBerat = [[jumlah_frek, panjang]] #test kematangan filename = 'kematangan1.sav' loaded_model = pickle.load(open(filename, 'rb')) matangPredict = loaded_model.predict( testMatang) #nnti ini test : inputan baru #Test Berat filename = 'berat1.sav' loaded_model = pickle.load(open(filename, 'rb')) beratPredict = loaded_model.predict(testBerat) return matangPredict[0], beratPredict[0] # print('Kematangan: %s' %(matangPredict[0])) # print('Berat : %.2f' %(beratPredict[0]))