Пример #1
0
    def get_data(self, date=None, timedelta='30m'):
        self.set_date(date)
        tmax = self.date
        tmin = self.date - pd.Timedelta(timedelta)
        if self.df is None:
            # Don't want to create the DB each time?
            try: 
                db = Database()
                db.connect()
                query ="""
                select date, qc_fwhm as fwhm, airmass, filter from exposure
                where date > '%s' and date < '%s'
                --and filter != 'VR' and qc_fwhm is not NULL
                and qc_fwhm is not NULL and qc_fwhm > 0
                """%(tmin, tmax)
                logging.debug(query)
                raw = db.query2rec(query)
            except Exception as e:
                logging.warn("Couldn't connect to database:\n%s"%str(e))
                dtype=[('date', '<M8[ns]'), ('fwhm', '<f8'),
                       ('airmass', '<f8'), ('filter', 'S4')]
                raw = np.recarray(0,dtype=dtype)
        else:
            sel = (self.df.index > tmin) & (self.df.index < tmax)
            raw = self.df[sel].to_records()

        return raw
Пример #2
0
def survey_coverage(nside=1024,
                    bands=['g', 'r', 'i', 'z'],
                    propid=None,
                    exptime=30,
                    teff=0.01):
    from obztak.utils.database import Database
    import healpy as hp

    bands = np.atleast_1d(bands)

    db = Database()
    db.connect()

    params = dict(propid='')
    if propid:
        params['propid'] = "(propid = '%s')" % propid
    else:
        params['propid'] = "(propid not like '%-9999')"

    params['exptime'] = "(exptime > %s)" % exptime
    params['teff'] = "not (qc_teff < %s)" % teff
    params['filter'] = "filter in (%s)" % (','.join(
        ["'%s'" % b for b in bands]))

    query = """select id as expnum, telra as ra, teldec as dec, filter, propid,
    exptime from exposure where
    discard = False and delivered = True and flavor = 'object'
    and %(propid)s and %(exptime)s and %(teff)s and %(filter)s;
    """ % params
    logging.debug(query)

    data = db.query2rec(query)

    out = dict()

    for b in bands:
        hpxmap = np.zeros(hp.nside2npix(nside))
        d = data[data['filter'] == b]
        theta = np.radians(90. - d['dec'])
        phi = np.radians(d['ra'])
        vec = hp.ang2vec(theta, phi)
        for i, v in enumerate(vec):
            if i % 10000 == 0:
                logging.info('%i/%i' % (i, len(vec)))
            pix = hp.query_disc(nside, v, radius=np.radians(constants.DECAM))
            hpxmap[pix] += d[i]['exptime']

        hpxmap[np.where(hpxmap == 0)] = hp.UNSEEN
        out[b] = hpxmap
    return out
Пример #3
0
 def get_data(self, date=None, timedelta='30m'):
     self.set_date(date)
     tmax = self.date
     tmin = self.date - pd.Timedelta(timedelta)
     if self.df is None:
         # Don't want to create the DB each time?
         db = Database(self.db)
         db.connect()
         query ="""
         select date, dimm2see as fwhm from exposure
         where date > '%s' and date < '%s'
         and dimm2see is not NULL
         """%(tmin, tmax)
         logging.debug(query)
         raw = db.query2rec(query)
     else:
         sel = (self.df.index > tmin) & (self.df.index < tmax)
         raw = self.df[sel].to_records()
     return raw
Пример #4
0
def post_qcinv(token=None,
               channel=None,
               propid=None,
               timedelta=None,
               debug=False):
    """Post inventory results to Slack.
    
    Parameters:
    -----------
    token  : slack bot token
    channel: slack channel
    propid : proposal id
    timedelta: time to collect exposure info
    debug  : execute but don't post

    Returns:
    --------
    df,pkg : data frame and text package
    """
    db = Database()
    db.connect()
    df = db.qcInv(propid=propid, timedelta=timedelta)

    if not len(df):
        logging.debug("No exposures found")
        return df, None

    kwargs = dict(index=False, float_format='{:.2f}'.format, justify='right')
    package = """Observing update @ {time} CST:
```
{content} 
```""".format(content=df.fillna('').to_string(**kwargs),
              time=datetime.now().strftime("%H:%M"))

    logging.debug(package)

    if debug:
        logging.debug("Exiting without posting.")
        return df, package

    ret = post_message(package, token=token, channel=channel)
    return df, package
Пример #5
0
def plot_bliss_nightsum(fields,nitestr):
    plot_bliss_coverage(fields)
    plt.savefig('nightsum_coverage_%s.png'%nitestr)

    new = (np.array(map(utc2nite,fields['DATE'])) == nitestr)
    new_fields = fields[new]
    old_fields = fields[~new]

    db = Database()
    db.connect()

    query = """select id, qc_fwhm as psf, qc_teff as teff from exposure
where exptime = 90 and delivered = True and propid = '%s'
and qc_teff is not NULL and qc_fwhm is not NULL
and to_timestamp(utc_beg) %s '%s'
"""

    new = db.query2recarray(query%(fields.PROPID,'>',datestr(date)))
    try:
        old = db.query2recarray(query%(fields.PROPID,'<',date))
    except ValueError as e:
        print(e)
        old = np.recarray(0,dtype=new.dtype)

    nbins = 35
    kwargs = dict(normed=True)
    step_kwargs = dict(kwargs,histtype='step',lw=3.5)
    fill_kwargs = dict(kwargs,histtype='stepfilled',lw=1.0,alpha=0.7)

    plt.figure()
    step_kwargs['bins'] = np.linspace(0.5,2.5,nbins)
    fill_kwargs['bins'] = np.linspace(0.5,2.5,nbins)
    plt.hist(new['psf'],color='green',zorder=10, label='Observed tonight', **fill_kwargs)
    plt.hist(new['psf'],color='green',zorder=10, **step_kwargs)
    plt.hist(old['psf'],color='0.5', label='Observed previously', **fill_kwargs)
    plt.hist(old['psf'],color='0.5', **step_kwargs)
    plt.axvline(1.20,ls='--',lw=2,color='gray')
    plt.legend()
    plt.title('Seeing (%s)'%nitestr)
    plt.xlabel('FWHM (arcsec)')
    plt.ylabel('Normalized Number of Exposures')
    plt.savefig('nightsum_psf_%s.png'%nitestr,bbox_inches='tight')

    plt.figure()
    step_kwargs['bins'] = np.linspace(0,1.5,nbins)
    fill_kwargs['bins'] = np.linspace(0,1.5,nbins)
    plt.hist(new['teff'],color='green',zorder=10,label='Observed tonight', **fill_kwargs)
    plt.hist(new['teff'],color='green',zorder=10, **step_kwargs)
    plt.hist(old['teff'],color='0.5',label='Observed previously', **fill_kwargs)
    plt.hist(old['teff'],color='0.5', **step_kwargs)
    plt.axvline(0.25,ls='--',lw=2,color='gray')
    plt.legend()
    plt.title('Effective Depth (%s)'%nitestr)
    plt.xlabel('Teff')
    plt.ylabel('Normalized Number of Exposures')
    plt.savefig('nightsum_teff_%s.png'%nitestr,bbox_inches='tight')
Пример #6
0
    def load_database(cls, database=None):
        """
        Load fields from the telemetry database.

        Parameters:
        -----------
        database : String or Database object to connect to.

        Returns:
        --------
        fields : A FieldArray filled from the database
        """
        try:
            from obztak.utils.database import Database
        except ImportError as e:
            logging.warn(e)
            return cls()

        try:
            database = Database(database)
        except IOError as e:
            logging.warn(e)
            return cls()

        database.connect()
        query = cls.query()

        logging.debug(query)
        data = database.execute(query)
        names = map(str.upper, database.get_columns())
        objidx = names.index('OBJECT')
        if not len(data):
            logging.warn("No fields found in database.")
            return cls()

        fields = cls()
        for d in data:
            f = cls(1)
            for i, key in enumerate(names):
                if key in f.dtype.names:
                    f[key] = d[i]
            f.from_object(d[objidx])
            fields = fields + f

        return fields
Пример #7
0
#!/usr/bin/env python
"""
Generic python script.
"""
import sys 
from collections import OrderedDict as odict

import healpy as hp
import numpy as np
import pylab as plt

from obztak.utils.database import Database
from obztak.utils.ortho import DECamBasemap, DECamMcBride

db = Database()
db.connect()

query ="""
SELECT id as expnum, telra as ra, teldec as dec, expTime, filter, 
COALESCE(qc_teff,'NaN') as teff
FROM exposure where exptime >= 30 and discard = False and delivered = True 
and flavor = 'object' and telra between 0 and 360 and teldec between -90 and 90
and filter in ('u','g','r','i','z','Y') and propid NOT LIKE '%-9999'
ORDER BY id;
"""

data = db.query2recarray(query)

exposures = odict([
        ('u',data[data['filter'] =='u']),
        ('g',data[data['filter'] =='g']),
import pandas as pd

import ephem
from obztak.utils import fileio
from obztak.utils.fileio import get_datafile, to_csv, read_csv
from obztak.utils.database import Database
import obztak.delve
import datetime
import skymap
import skymap.survey

from status import *

filename = EXPOSURES
if not os.path.exists(filename):
    db = Database('db-fnal')
    db.connect()
    data = db.query2recarray(QUERY)
    print("Writing %s..." % filename)
    fileio.rec2csv(filename, data)
else:
    print("Reading %s..." % filename)
    data = fileio.csv2rec(filename)

good = data[select_good_exposures(data)]
guid = np.char.rpartition(good['object'].astype(str), ' ')[:, -1]
# Unique fields
guid, idx = np.unique(guid, return_index=True)
good = good[idx]

fields = obztak.delve.DelveFieldArray().load(get_datafile(TARGETS))
Пример #9
0
def plot_nightsum(fields,nitestr):
    """ Plot the night summary for MagLiteS.

    Parameters:
    -----------
    fields:  the fields observed tonight
    nitestr: the nite in strig format

    Returns:
    --------
    None
    """
    import pylab as plt
    from obztak.utils.database import Database
    from obztak.utils.ortho import makePlot

    #fields = FieldArray.load_database()
    #new = np.char.startswith(fields['DATE'],date)

    date = nite2utc(nitestr)
    new = (np.array(map(utc2nite,fields['DATE'])) == nitestr)
    new_fields = fields[new]
    old_fields = fields[~new]

    kwargs = dict(edgecolor='none', s=50, vmin=0, vmax=4)
    fig,basemap = makePlot(date=nitestr,name='nightsum',moon=False,airmass=False,center=(0,-90),bliss=False)
    plt.title('Coverage (%s)'%nitestr)
    kwargs['cmap'] = 'gray_r'
    proj = basemap.proj(old_fields['RA'], old_fields['DEC'])
    basemap.scatter(*proj, c=old_fields['TILING'],**kwargs)

    kwargs['cmap'] = 'summer_r'
    proj = basemap.proj(new_fields['RA'], new_fields['DEC'])
    basemap.scatter(*proj, c=new_fields['TILING'],  **kwargs)
    colorbar = plt.colorbar()
    colorbar.set_label('Tiling')

    plt.plot(np.nan, np.nan,'o',color='green',mec='green',label='Observed tonight')
    plt.plot(np.nan, np.nan,'o',color='0.7',mec='0.7',label='Observed previously')
    plt.legend(fontsize=10,loc='lower left',scatterpoints=1)
    plt.savefig('nightsum_coverage_%s.png'%nitestr,bbox_inches='tight')

    db = Database()
    db.connect()

    query = """
    select id, qc_fwhm as psf, qc_teff as teff from exposure
    where exptime = 90 and delivered = True 
    and propid = '%s'
    and qc_teff is not NULL and qc_fwhm is not NULL
    and to_timestamp(utc_beg) %s '%s'
    """

    new = db.query2recarray(query%(PROPID,'>',date))
    old = db.query2recarray(query%(PROPID,'<',date))

    nbins = 35
    kwargs = dict(normed=True)
    step_kwargs = dict(kwargs,histtype='step',lw=3.5)
    fill_kwargs = dict(kwargs,histtype='stepfilled',lw=1.0,alpha=0.7)

    plt.figure()
    step_kwargs['bins'] = np.linspace(0.5,2.5,nbins)
    fill_kwargs['bins'] = np.linspace(0.5,2.5,nbins)
    plt.hist(new['psf'],color='green',zorder=10, label='Observed tonight', **fill_kwargs)
    plt.hist(new['psf'],color='green',zorder=10, **step_kwargs)
    plt.hist(old['psf'],color='0.5', label='Observed previously', **fill_kwargs)
    plt.hist(old['psf'],color='0.5', **step_kwargs)
    plt.axvline(1.20,ls='--',lw=2,color='gray')
    plt.legend()
    plt.title('Seeing (%s)'%nitestr)
    plt.xlabel('FWHM (arcsec)')
    plt.ylabel('Normalized Number of Exposures')
    plt.savefig('nightsum_psf_%s.png'%nitestr,bbox_inches='tight')

    plt.figure()
    step_kwargs['bins'] = np.linspace(0,1.5,nbins)
    fill_kwargs['bins'] = np.linspace(0,1.5,nbins)
    plt.hist(new['teff'],color='green',zorder=10,label='Observed tonight', **fill_kwargs)
    plt.hist(new['teff'],color='green',zorder=10, **step_kwargs)
    plt.hist(old['teff'],color='0.5',label='Observed previously', **fill_kwargs)
    plt.hist(old['teff'],color='0.5', **step_kwargs)
    plt.axvline(0.25,ls='--',lw=2,color='gray')
    plt.legend()
    plt.title('Effective Depth (%s)'%nitestr)
    plt.xlabel('Teff')
    plt.ylabel('Normalized Number of Exposures')
    plt.savefig('nightsum_teff_%s.png'%nitestr,bbox_inches='tight')
Пример #10
0
def plot_nightsum(fields,nitestr,date):
    """ Plot the bliss night summary. 

    Parameters:
    -----------
    fields:  the fields observed tonight
    nitestr: the nite in strig format

    Returns:
    --------
    None
    """
    from obztak.utils.database import Database
    plt.ioff()


    # Select the fields from the database
    db = Database()
    db.connect()
    query = """
    select id, qc_fwhm as psf, qc_teff as teff, filter from exposure
    where delivered = True and propid = '%s'
    and flavor = 'object'
    and qc_teff is not NULL
    and qc_fwhm is not NULL
    and to_timestamp(utc_beg) %s
    """
    #new = db.query2recarray(query%(fields.PROPID,'>',datestr(date)))
    d = datestr(date)
    q = query%(fields.PROPID,"between (timestamp '%s') AND (timestamp '%s' + interval '12 hours')"%(d,d))
    logging.debug(q)
    new = db.query2recarray(q)
    try:
        q = query%(fields.PROPID,"< (timestamp '%s')"%d)
        logging.debug(q)
        old = db.query2recarray(q)
    except ValueError as e:
        print(e)
        old = np.recarray(0,dtype=new.dtype)

    for b in ['u','g','r','i','z','Y']:
        f = new[new['filter'] == b]
        print ' %s-band:'%b, len(f)

    if not len(new):
        logging.warn("No new exposures...")
        return

    ##########################

    plot_coverage(fields,nitestr)

    ##########################

    fig,axes = plt.subplots(1,2,figsize=(12,5))
    for i,d in enumerate(['2017/02/08 07:00:00','2017/02/08 19:00:00']):
        plt.sca(axes[i])
        bmap = DECamOrtho(date=d)
        for b in np.unique(fields['FILTER']):
            f = fields[fields['FILTER']==b]
            bmap.draw_focal_planes(f['RA'],f['DEC'],color=COLORS[b],alpha=0.3)
        bmap.draw_bliss()
        bmap.draw_galaxy()
        bmap.draw_des()

    plt.suptitle('Coverage (%s)'%nitestr,fontsize=16)
    plt.savefig('nightsum_summary_%s.png'%nitestr)

    new_sel = (np.array(map(utc2nite,fields['DATE'])) == nitestr)
    new_fields = fields[new_sel]
    old_fields = fields[~new_sel]

    ##########################

    fig,axes = plt.subplots(1,2,figsize=(12,5))
    plt.sca(axes[0])
    plt.plot(np.nan,np.nan,'-w',label='all')
    plot_psf(new,old)
    plt.title('Seeing (%s)'%nitestr)
    plt.sca(axes[1])
    plt.plot(np.nan,np.nan,'-w',label='all')
    plot_teff(new,old)
    plt.title('Effective Depth (%s)'%nitestr)
    plt.savefig('nightsum_psf_teff_%s.png'%nitestr,bbox_inches='tight')

    fig,axes = plt.subplots(2,2,figsize=(14,10))
    axes = axes.flatten()
    for i,b in enumerate(['g','r','i','z']):
        plt.sca(axes[i])
        plt.plot(np.nan,np.nan,'-w',label='%s-band'%b)
        plot_psf(new[new['filter'] == b],old[old['filter'] == b])
    plt.savefig('nightsum_psf_%s.png'%nitestr,bbox_inches='tight')

    fig,axes = plt.subplots(2,2,figsize=(14,10))
    axes = axes.flatten()
    for i,b in enumerate(['g','r','i','z']):
        plt.sca(axes[i])
        plt.plot(np.nan,np.nan,'-w',label='%s-band'%b)
        plot_teff(new[new['filter'] == b],old[old['filter'] == b])
    plt.savefig('nightsum_teff_%s.png'%nitestr,bbox_inches='tight')