def analyze_digit_MLP(img): """ Takes in an image matrix, crops out the digits and outputs it to file """ ocr.delete_files("../pics/cropped/") print ("Preprocessing Image, Cropping Digits Into 28 X 28 Image Matrices\n") cropped_img_to_show, cropped_thresh_to_Show, cropped_digits = ocr.save_digit_to_binary_img_as_mnist(img, dim = 28, saveToFile = True, imgSize = frame_new_dim) print ("Image Preprocessing Done, %d Potential Digits Were Cropped Out\n" % len(cropped_digits)) print ("Predicting Results\n") print ("Image Digit probability") index = 0 for input_digit in cropped_digits: path = "../pics/cropped/" + str(index) + ".png" input_digit = imread(path) digit, probability = mlp.predict(input_digit, mlp_classifier) print ("%d.png %d %f" % (index, digit, probability)) index += 1 new_dim = (SCALE_FACTOR * img.shape[1]/2, SCALE_FACTOR * img.shape[0]/2) cropped_img_to_show = cv2.resize(cropped_img_to_show, new_dim) cropped_thresh_to_Show = cv2.resize(cropped_thresh_to_Show, new_dim) cv2.imshow('handWriting Capture Cropped Image', cropped_img_to_show) cv2.imshow('handWriting Capture Cropped Thresh', cropped_thresh_to_Show)
def analyze_digit_SVM(img): ocr.delete_files("../pics/cropped/") print ("Preprocessing Image, Cropping Digits Into 28 X 28 Image Matrices\n") cropped_img_to_show, cropped_thresh_to_Show, cropped_digits = ocr.save_digit_to_binary_img_as_mnist(img, dim = 8, saveToFile = True, imgSize = frame_new_dim) print ("Image Preprocessing Done, %d Potential Digits Were Cropped Out\n" % len(cropped_digits)) print ("Predicting Results\n") print ("Image Digit probability")
Digit Segmentation and Classification Using MLP and OpenCV on GoogleStreetView Data Base Created by: Chenxing Ouyang & Jiali Xie """ import sys import cv2 import numpy as np from pylab import imread, imshow, imsave, figure, show, subplot, plot, scatter, title import ocr import multilayerPerceptron as mlp print(__doc__) ocr.delete_files("../pics/cropped/") print ("Preprocessing Image, Cropping Digits Into 28 X 28 Image Matrices\n") # save_digit_to_binary_img_as_mnist(imgName, saveToFile = True, imgSize = 100, boundingRectMinSize = 5) cropped_img_for_show, cropped_digits = ocr.save_digit_to_binary_img_as_mnist("../pics/12.png",saveToFile = True) print ("Image Preprocessing Done, %d Potential Digits Were Cropped Out\n" % len(cropped_digits)) print ("Building Multilayer Perceptron Network From Trained Model\n") mlp_classifier = mlp.build_classifier('../trainedResult/model.npz') # input_img = imread('../pics/cropped/0.png') # print mlp.predict(input_img, mlp_classifier)
Digit Segmentation and Classification Using MLP and OpenCV on GoogleStreetView Data Base Created by: Chenxing Ouyang & Jiali Xie """ import sys import cv2 import numpy as np from pylab import imread, imshow, imsave, figure, show, subplot, plot, scatter, title import ocr import multilayerPerceptron as mlp print(__doc__) ocr.delete_files("../pics/cropped/") print("Preprocessing Image, Cropping Digits Into 28 X 28 Image Matrices\n") # save_digit_to_binary_img_as_mnist(imgName, saveToFile = True, imgSize = 100, boundingRectMinSize = 5) cropped_img_to_show, cropped_thresh_to_Show, cropped_digits = ocr.save_digit_to_binary_img_as_mnist( "../pics/print.png", dim=28, imgSize=100, saveToFile=True) print("Image Preprocessing Done, %d Potential Digits Were Cropped Out\n" % len(cropped_digits)) print("Building Multilayer Perceptron Network From Trained Model\n") mlp_classifier = mlp.build_classifier('../trainedResult/model.npz') # input_img = imread('../pics/cropped/0.png') # print mlp.predict(input_img, mlp_classifier)