def test_conv_deconv_transpose(self): def feval(X, y): f = K.function(X, y) shape = (np.random.randint(8, 18), ) + tuple(X.shape.as_list()[1:]) x = np.random.rand(*shape) return f(x) prog = Progbar(target=2 * 3 * 3 * 2 * 2, print_report=True) for X in (K.placeholder(shape=(None, 13, 12, 25)), K.placeholder(shape=(None, 13, 12, 8, 25))): for strides in (1, 2, 3): for filter_size in (3, 4, 5): for num_filters in (8, 25): for pad in ("same", "valid"): for dilation in (1, ): # ====== progress ====== # prog['test'] = "#Dim:%d;Stride:%d;Filter:%d;Channel:%d;Pad:%s" % \ (X.shape.ndims, strides, filter_size, num_filters, pad) prog.add(1) # ====== test Conv ====== # f = N.Conv(num_filters=num_filters, filter_size=filter_size, pad=pad, strides=strides, activation=tf.nn.relu, dilation=dilation) fT = f.T y = f(X) self.assertEqual( feval(X, y).shape[1:], tuple(y.shape.as_list()[1:])) yT = fT(y) self.assertEqual( feval(X, yT).shape[1:], tuple(yT.shape.as_list()[1:])) self.assertEqual(X.shape.as_list(), yT.shape.as_list()) # ====== test Transpose ====== # f = N.TransposeConv(num_filters=num_filters, filter_size=filter_size, pad=pad, strides=strides, activation=K.relu, dilation=dilation) fT = f.T y = f(X) self.assertEqual( feval(X, y).shape[1:], tuple(y.shape.as_list()[1:])) yT = fT(y) self.assertEqual( feval(X, yT).shape[1:], tuple(yT.shape.as_list()[1:])) self.assertEqual(X.shape.as_list(), yT.shape.as_list())
N.BatchNorm(), N.Conv(num_filters=64, filter_size=3, pad='valid'), N.BatchNorm(activation=tf.nn.elu), N.Pool(), N.Flatten(outdim=2), N.Dense(num_units=args.dim) ], debug=True, name='EncoderNetwork') f_decoder = N.Sequence([ N.Dropout(level=LATENT_DROPOUT, noise_type='uniform'), N.Noise(level=1.0, noise_type='gaussian'), N.Dimshuffle((0, 'x', 'x', 1)), N.TransposeConv(num_filters=64, filter_size=3, pad='valid'), N.Upsample(size=2, axes=(1, 2)), N.BatchNorm(), N.TransposeConv(num_filters=64, filter_size=3, pad='same'), N.BatchNorm(), N.TransposeConv(num_filters=32, filter_size=3, pad='valid'), N.Upsample(size=2, axes=(1, 2), desire_shape=None if is_cifar10 else (None, 14, 14, None)), N.BatchNorm(), N.TransposeConv(num_filters=3 if is_cifar10 else 1, filter_size=3, strides=2, pad='same'), N.Dimshuffle((0, 3, 1, 2)) if is_cifar10 else N.Squeeze(axis=-1) ], debug=True, name='DecoderNetwork')
def convolutional_vae(X, saved_states, **kwargs): """ convolutional_vae Return ------ [y_encoder, y_decoder] States ------ [f_inference (encoder), f_generative (decoder)] """ n = kwargs.get('n', 10) batch_size = K.get_shape(X)[0] if batch_size is None: raise ValueError( "You must specify batch_size dimension for the input placeholder.") # ====== init ====== # if saved_states is None: # Encoder f_inference = N.Sequence([ N.Reshape(shape=(-1, 28, 28, 1)), N.Conv(num_filters=32, filter_size=3, strides=1, pad='valid', b_init=init_ops.constant_initializer(0.), activation=K.elu), N.Conv(num_filters=64, filter_size=5, strides=2, pad='same', b_init=init_ops.constant_initializer(0.), activation=K.elu), N.Dropout(level=0.1), N.Flatten(outdim=2), N.Dense(num_units=n * 2, b_init=None), N.BatchNorm(axes=0) ], debug=True, name='Encoder') # Decoder f_generative = N.Sequence([ N.Dimshuffle(pattern=(0, 'x', 'x', 1)), N.TransposeConv(num_filters=64, filter_size=3, strides=1, pad='valid', b_init=init_ops.constant_initializer(0.), activation=K.elu), N.TransposeConv(num_filters=32, filter_size=5, strides=2, pad='same', b_init=init_ops.constant_initializer(0.), activation=K.elu), N.TransposeConv(num_filters=1, filter_size=13, strides=3, pad='valid', b_init=None), N.BatchNorm(activation=K.linear), N.Flatten(outdim=3) ], debug=True, name="Decoder") else: f_inference, f_generative = saved_states # ====== Perfrom ====== # # Encoder y_encoder = f_inference(K.cast(X, 'float32')) mu = y_encoder[:, :n] sigma = K.softplus(y_encoder[:, n:]) qz = Normal(mu=mu, sigma=sigma, name='Normal_qz') # Decoder z = Normal(mu=K.zeros(shape=(batch_size, n)), sigma=K.ones(shape=(batch_size, n)), name="Normal_pz") logits = f_generative(z) X_reconstruct = Bernoulli(logits=logits) # inference params = f_inference.parameters + f_generative.parameters inference = ed.KLqp(latent_vars={z: qz}, data={X_reconstruct: X}) # ====== get cost for training ====== # # Bind p(x, z) and q(z | x) to the same placeholder for x. if K.is_training(): import tensorflow as tf inference.initialize() if True: optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0) updates = optimizer.apply_gradients( optimizer.compute_gradients(inference.loss, var_list=params)) init = tf.global_variables_initializer() init.run() f_train = K.function(X, inference.loss, updates) else: optimizer = tf.train.AdamOptimizer(0.01, epsilon=1.0) inference.initialize(optimizer=optimizer, var_list=params) init = tf.global_variables_initializer() init.run() f_train = lambda x: inference.update(feed_dict={X: x})['loss'] samples = K.sigmoid(logits) return (samples, z, qz), (f_inference, f_generative)