Пример #1
0
def test_apply_on_boundary_which_boundaries():

    # 1d
    arr = np.ones(5)
    which = ((True, False), )
    result = apply_on_boundary(arr, lambda x: x * 2, which_boundaries=which)
    assert all_equal(result, [2, 1, 1, 1, 1])

    # 2d
    arr = np.ones((3, 5))
    which = ((True, False), True)
    result = apply_on_boundary(arr, lambda x: x * 2, which_boundaries=which)
    assert all_equal(result,
                     [[2, 2, 2, 2, 2], [2, 1, 1, 1, 2], [2, 1, 1, 1, 2]])
Пример #2
0
def test_apply_on_boundary_default():

    # 1d
    arr = np.ones(5)
    result = apply_on_boundary(arr, lambda x: x * 2)
    assert all_equal(arr, [1, 1, 1, 1, 1])
    assert all_equal(result, [2, 1, 1, 1, 2])

    # 3d
    arr = np.ones((3, 4, 5))
    result = apply_on_boundary(arr, lambda x: x * 2)
    true_arr = 2 * np.ones((3, 4, 5))
    true_arr[1:-1, 1:-1, 1:-1] = 1
    assert all_equal(result, true_arr)
Пример #3
0
    def _call(self, x, out):
        """Mask ``x`` and store the result in ``out`` if given."""
        # Find the indices of the mask min and max. The floating point
        # versions are also required for the linear transition.
        idx_min_flt = np.array(self.domain.partition.index(self.min_pt,
                                                           floating=True),
                               ndmin=1)
        idx_max_flt = np.array(self.domain.partition.index(self.max_pt,
                                                           floating=True),
                               ndmin=1)

        # To deal with coinciding boundaries we introduce an epsilon tolerance
        epsilon = 1e-6
        idx_min = np.floor(idx_min_flt - epsilon).astype(int)
        idx_max = np.ceil(idx_max_flt + epsilon).astype(int)

        def coeffs(d):
            return (1.0 - (idx_min_flt[d] - idx_min[d]),
                    1.0 - (idx_max[d] - idx_max_flt[d]))

        # Need an extra level of indirection in order to capture `d` inside
        # the lambda expressions
        def fn_pair(d):
            return (lambda x: x * coeffs(d)[0], lambda x: x * coeffs(d)[1])

        boundary_scale_fns = [fn_pair(d) for d in range(x.ndim)]

        slc = tuple(slice(imin, imax) for imin, imax in zip(idx_min, idx_max))
        slc_inner = tuple(
            slice(imin + 1, imax - 1) for imin, imax in zip(idx_min, idx_max))

        # Make a mask that is 1 outside the masking region, 0 inside
        # and has a linear transition where the region boundary does not
        # coincide with a cell boundary
        mask = np.ones_like(x)
        mask[slc_inner] = 0
        apply_on_boundary(mask[slc],
                          boundary_scale_fns,
                          only_once=False,
                          out=mask[slc])
        apply_on_boundary(mask[slc],
                          lambda x: 1.0 - x,
                          only_once=True,
                          out=mask[slc])

        # out = masked version of x
        out.assign(x)
        with writable_array(out) as out_arr:
            out_arr[slc] = mask[slc] * out_arr[slc]
Пример #4
0
def test_apply_on_boundary_axis_order_2d():

    arr = np.ones((3, 5))
    axis_order = (-1, -2)
    result = apply_on_boundary(arr, [lambda x: x * 3, lambda x: x * 2],
                               axis_order=axis_order)
    assert all_equal(result,
                     [[3, 2, 2, 2, 3], [3, 1, 1, 1, 3], [3, 2, 2, 2, 3]])
Пример #5
0
def test_apply_on_boundary_which_boundaries_multiple_times_2d():

    # 2d
    arr = np.ones((3, 5))
    which = ((True, False), True)
    result = apply_on_boundary(arr,
                               lambda x: x * 2,
                               which_boundaries=which,
                               only_once=False)
    assert all_equal(result,
                     [[4, 2, 2, 2, 4], [2, 1, 1, 1, 2], [2, 1, 1, 1, 2]])
Пример #6
0
    def _norm(self, x):
        """Return ``self.norm(x)``."""
        bdry_fracs = self.partition.boundary_cell_fractions
        if (np.allclose(bdry_fracs, 1.0) or
                self.exponent == float('inf') or
                not getattr(self.dspace, 'is_weighted', False)):
            # no boundary weighting
            return super()._norm(x)
        else:
            # TODO: implement without copying x
            func_list = _scaling_func_list(bdry_fracs, exponent=self.exponent)

            x_arr = apply_on_boundary(x, func=func_list, only_once=False)
            return super()._norm(self.element(x_arr))
Пример #7
0
    def _dist(self, x, y):
        """Return ``self.dist(x, y)``."""
        bdry_fracs = self.partition.boundary_cell_fractions
        if (np.allclose(bdry_fracs, 1.0) or
                self.exponent == float('inf') or
                not getattr(self.dspace, 'is_weighted', False)):
            # no boundary weighting
            return super()._dist(x, y)
        else:
            # TODO: implement without copying x
            func_list = _scaling_func_list(bdry_fracs, exponent=self.exponent)

            arrs = [apply_on_boundary(vec, func=func_list, only_once=False)
                    for vec in (x, y)]

            return super()._dist(self.element(arrs[0]), self.element(arrs[1]))
Пример #8
0
def test_apply_on_boundary_multiple_times_2d():

    arr = np.ones((3, 5))
    result = apply_on_boundary(arr, lambda x: x * 2, only_once=False)
    assert all_equal(result,
                     [[4, 2, 2, 2, 4], [2, 1, 1, 1, 2], [4, 2, 2, 2, 4]])
Пример #9
0
def test_apply_on_boundary_func_sequence_2d():

    arr = np.ones((3, 5))
    result = apply_on_boundary(arr, [lambda x: x * 2, lambda x: x * 3])
    assert all_equal(result,
                     [[2, 2, 2, 2, 2], [3, 1, 1, 1, 3], [2, 2, 2, 2, 2]])