Пример #1
0
def test_uniform_partition_fromgrid():
    vec1 = np.array([2, 4, 5, 7])
    vec2 = np.array([-4, -3, 0, 1, 4])
    begin = [0, -4]
    end = [7, 8]
    beg_calc = [2 - (4 - 2) / 2, -4 - (-3 + 4) / 2]
    end_calc = [7 + (7 - 5) / 2, 4 + (4 - 1) / 2]

    # Default case
    grid = odl.TensorGrid(vec1, vec2)
    part = odl.uniform_partition_fromgrid(grid)
    assert part.set == odl.IntervalProd(beg_calc, end_calc)

    # Explicit begin / end, full vectors
    part = odl.uniform_partition_fromgrid(grid, begin=begin)
    assert part.set == odl.IntervalProd(begin, end_calc)
    part = odl.uniform_partition_fromgrid(grid, end=end)
    assert part.set == odl.IntervalProd(beg_calc, end)

    # begin / end as dictionaries
    beg_dict = {0: 0.5}
    end_dict = {-1: 8}
    part = odl.uniform_partition_fromgrid(grid, begin=beg_dict, end=end_dict)
    true_beg = [0.5, beg_calc[1]]
    true_end = [end_calc[0], 8]
    assert part.set == odl.IntervalProd(true_beg, true_end)

    # Degenerate dimension, needs both explicit begin and end
    grid = odl.TensorGrid(vec1, [1.0])
    with pytest.raises(ValueError):
        odl.uniform_partition_fromgrid(grid)
    with pytest.raises(ValueError):
        odl.uniform_partition_fromgrid(grid, begin=begin)
    with pytest.raises(ValueError):
        odl.uniform_partition_fromgrid(grid, end=end)
Пример #2
0
def test_partition_insert():
    vec11 = [2, 4, 5, 7]
    vec12 = [-4, -3, 0, 1, 4]
    begin1 = [1, -4]
    end1 = [7, 5]
    grid1 = odl.TensorGrid(vec11, vec12)
    intv1 = odl.IntervalProd(begin1, end1)
    part1 = odl.RectPartition(intv1, grid1)

    vec21 = [-2, 0, 3]
    vec22 = [0]
    begin2 = [-2, -2]
    end2 = [4, 0]
    grid2 = odl.TensorGrid(vec21, vec22)
    intv2 = odl.IntervalProd(begin2, end2)
    part2 = odl.RectPartition(intv2, grid2)

    part = part1.insert(0, part2)
    assert all_equal(part.begin, [-2, -2, 1, -4])
    assert all_equal(part.end, [4, 0, 7, 5])
    assert all_equal(part.grid.min_pt, [-2, 0, 2, -4])
    assert all_equal(part.grid.max_pt, [3, 0, 7, 4])

    part = part1.insert(1, part2)
    assert all_equal(part.begin, [1, -2, -2, -4])
    assert all_equal(part.end, [7, 4, 0, 5])
    assert all_equal(part.grid.min_pt, [2, -2, 0, -4])
    assert all_equal(part.grid.max_pt, [7, 3, 0, 4])
Пример #3
0
def test_partition_init():
    vec1 = np.array([2, 4, 5, 7])
    vec2 = np.array([-4, -3, 0, 1, 4])
    begin = [2, -5]
    end = [10, 4]

    # Simply test if code runs
    odl.RectPartition(odl.Rectangle(begin, end), odl.TensorGrid(vec1, vec2))
    odl.RectPartition(odl.Interval(begin[0], end[0]), odl.TensorGrid(vec1))

    # Degenerate dimensions should work, too
    vec2 = np.array([1.0])
    odl.RectPartition(odl.Rectangle(begin, end), odl.TensorGrid(vec1, vec2))
Пример #4
0
def test_partition_init_raise():
    # Check different error scenarios
    vec1 = np.array([2, 4, 5, 7])
    vec2 = np.array([-4, -3, 0, 1, 4])
    grid = odl.TensorGrid(vec1, vec2)
    begin = [2, -5]
    end = [10, 4]

    beg_toolarge = (2, -3.5)
    end_toosmall = (7, 1)
    beg_badshape = (-1, 2, 0)
    end_badshape = (2, )

    with pytest.raises(ValueError):
        odl.RectPartition(odl.IntervalProd(beg_toolarge, end), grid)

    with pytest.raises(ValueError):
        odl.RectPartition(odl.IntervalProd(begin, end_toosmall), grid)

    with pytest.raises(ValueError):
        odl.RectPartition(odl.IntervalProd(beg_badshape, end_badshape), grid)

    with pytest.raises(TypeError):
        odl.RectPartition(None, grid)

    with pytest.raises(TypeError):
        odl.RectPartition(odl.IntervalProd(beg_toolarge, end), None)
Пример #5
0
def test_partition_getitem():
    vec1 = [2, 4, 5, 7]
    vec2 = [-4, -3, 0, 1, 4]
    vec3 = [-2, 0, 3]
    vec4 = [0]
    vecs = [vec1, vec2, vec3, vec4]
    begin = [1, -4, -2, -2]
    end = [7, 5, 4, 0]
    grid = odl.TensorGrid(*vecs)
    intv = odl.IntervalProd(begin, end)
    part = odl.RectPartition(intv, grid)

    # Test a couple of slices
    slc = (1, -2, 2, 0)
    slc_vecs = [v[i] for i, v in zip(slc, vecs)]
    slc_part = part[slc]
    assert slc_part.grid == odl.TensorGrid(*slc_vecs)
    slc_beg = [3, 0.5, 1.5, -2]
    slc_end = [4.5, 2.5, 4, 0]
    assert slc_part.set == odl.IntervalProd(slc_beg, slc_end)

    slc = (slice(None), slice(None, None, 2), slice(None, 2), 0)
    slc_vecs = [v[i] for i, v in zip(slc, vecs)]
    slc_part = part[slc]
    assert slc_part.grid == odl.TensorGrid(*slc_vecs)
    slc_beg = [1, -4, -2, -2]
    slc_end = [7, 5, 1.5, 0]
    assert slc_part.set == odl.IntervalProd(slc_beg, slc_end)

    # Fewer indices
    assert part[1] == part[1, :, :, :] == part[1, ...]
    assert part[1, 2:] == part[1, 2:, :, :] == part[1, 2:, ...]
    assert part[1, 2:, ::2] == part[1, 2:, ::2, :] == part[1, 2:, ::2, ...]

    # Index list using indices 0 and 2
    lst_beg = [1, -4, -2, -2]
    lst_end = [6, 5, 4, 0]
    lst_intv = odl.IntervalProd(lst_beg, lst_end)
    lst_vec1 = [2, 5]
    lst_grid = odl.TensorGrid(lst_vec1, vec2, vec3, vec4)
    lst_part = odl.RectPartition(lst_intv, lst_grid)
    assert part[[0, 2]] == lst_part
Пример #6
0
def test_astra_projection_geometry():
    """Create ASTRA projection geometry from geometry objects."""

    with pytest.raises(TypeError):
        odl.tomo.astra_projection_geometry(None)

    apart = odl.uniform_partition(0, 2 * np.pi, 5)
    dpart = odl.uniform_partition(-40, 40, 10)

    # motion sampling grid, detector sampling grid but not RegularGrid
    dpart_0 = odl.RectPartition(odl.Interval(0, 0), odl.TensorGrid([0]))
    geom_p2d = odl.tomo.Parallel2dGeometry(apart, dpart=dpart_0)
    with pytest.raises(ValueError):
        odl.tomo.astra_projection_geometry(geom_p2d)

    # detector sampling grid, motion sampling grid
    geom_p2d = odl.tomo.Parallel2dGeometry(apart, dpart)
    odl.tomo.astra_projection_geometry(geom_p2d)

    # Parallel 2D geometry
    geom_p2d = odl.tomo.Parallel2dGeometry(apart, dpart)
    astra_geom = odl.tomo.astra_projection_geometry(geom_p2d)
    assert astra_geom['type'] == 'parallel'

    # Fan flat
    src_rad = 10
    det_rad = 5
    geom_ff = odl.tomo.FanFlatGeometry(apart, dpart, src_rad, det_rad)
    astra_geom = odl.tomo.astra_projection_geometry(geom_ff)
    assert astra_geom['type'] == 'fanflat_vec'

    dpart = odl.uniform_partition([-40, -3], [40, 3], (10, 5))

    # Parallel 3D geometry
    geom_p3d = odl.tomo.Parallel3dAxisGeometry(apart, dpart)
    odl.tomo.astra_projection_geometry(geom_p3d)
    astra_geom = odl.tomo.astra_projection_geometry(geom_p3d)
    assert astra_geom['type'] == 'parallel3d_vec'

    # Circular conebeam flat
    geom_ccf = odl.tomo.CircularConeFlatGeometry(apart, dpart, src_rad,
                                                 det_rad)
    astra_geom = odl.tomo.astra_projection_geometry(geom_ccf)
    assert astra_geom['type'] == 'cone_vec'

    # Helical conebeam flat
    pitch = 1
    geom_hcf = odl.tomo.HelicalConeFlatGeometry(apart, dpart, src_rad, det_rad,
                                                pitch)
    astra_geom = odl.tomo.astra_projection_geometry(geom_hcf)
    assert astra_geom['type'] == 'cone_vec'
Пример #7
0
def test_partition_set():
    vec1 = np.array([2, 4, 5, 7])
    vec2 = np.array([-4, -3, 0, 1, 4])
    grid = odl.TensorGrid(vec1, vec2)

    begin = [1, -4]
    end = [10, 5]
    intv = odl.IntervalProd(begin, end)

    part = odl.RectPartition(intv, grid)
    assert part.set == odl.IntervalProd(begin, end)
    assert all_equal(part.begin, begin)
    assert all_equal(part.min(), begin)
    assert all_equal(part.end, end)
    assert all_equal(part.max(), end)
Пример #8
0
def test_partition_cell_boundary_vecs():
    vec1 = np.array([2, 4, 5, 7])
    vec2 = np.array([-4, -3, 0, 1, 4])
    grid = odl.TensorGrid(vec1, vec2)

    midpts1 = [3, 4.5, 6]
    midpts2 = [-3.5, -1.5, 0.5, 2.5]

    begin = [2, -6]
    end = [10, 4]
    intv = odl.IntervalProd(begin, end)

    true_bvec1 = [2] + midpts1 + [10]
    true_bvec2 = [-6] + midpts2 + [4]

    part = odl.RectPartition(intv, grid)
    assert all_equal(part.cell_boundary_vecs, (true_bvec1, true_bvec2))
Пример #9
0
def projector(request):

    n_angles = 200

    geom, impl, angle = request.param.split()

    if angle == 'uniform':
        apart = odl.uniform_partition(0, 2 * np.pi, n_angles)
    elif angle == 'random':
        # Linearly spaced with random noise
        min_pt = 2 * (2.0 * np.pi) / n_angles
        max_pt = (2.0 * np.pi) - 2 * (2.0 * np.pi) / n_angles
        points = np.linspace(min_pt, max_pt, n_angles)
        points += np.random.rand(n_angles) * (max_pt - min_pt) / (5 * n_angles)
        agrid = odl.TensorGrid(points)
        apart = odl.RectPartition(odl.Interval(0, 2 * np.pi), agrid)
    elif angle == 'nonuniform':
        # Angles spaced quadratically
        min_pt = 2 * (2.0 * np.pi) / n_angles
        max_pt = (2.0 * np.pi) - 2 * (2.0 * np.pi) / n_angles
        points = np.linspace(min_pt**0.5, max_pt**0.5, n_angles)**2
        agrid = odl.TensorGrid(points)
        apart = odl.RectPartition(odl.Interval(0, 2 * np.pi), agrid)
    else:
        raise ValueError('angle not valid')

    if geom == 'par2d':
        # Discrete reconstruction space
        discr_reco_space = odl.uniform_discr([-20, -20], [20, 20], [100, 100],
                                             dtype='float32')

        # Geometry
        dpart = odl.uniform_partition(-30, 30, 200)
        geom = tomo.Parallel2dGeometry(apart, dpart)

        # Ray transform
        return tomo.RayTransform(discr_reco_space, geom, impl=impl)

    elif geom == 'par3d':
        # Discrete reconstruction space
        discr_reco_space = odl.uniform_discr([-20, -20, -20], [20, 20, 20],
                                             [100, 100, 100],
                                             dtype='float32')

        # Geometry
        dpart = odl.uniform_partition([-30, -30], [30, 30], [200, 200])
        geom = tomo.Parallel3dAxisGeometry(apart, dpart, axis=[1, 0, 0])

        # Ray transform
        return tomo.RayTransform(discr_reco_space, geom, impl=impl)

    elif geom == 'cone2d':
        # Discrete reconstruction space
        discr_reco_space = odl.uniform_discr([-20, -20], [20, 20], [100, 100],
                                             dtype='float32')

        # Geometry
        dpart = odl.uniform_partition(-30, 30, 200)
        geom = tomo.FanFlatGeometry(apart,
                                    dpart,
                                    src_radius=200,
                                    det_radius=100)

        # Ray transform
        return tomo.RayTransform(discr_reco_space, geom, impl=impl)

    elif geom == 'cone3d':
        # Discrete reconstruction space
        discr_reco_space = odl.uniform_discr([-20, -20, -20], [20, 20, 20],
                                             [100, 100, 100],
                                             dtype='float32')

        # Geometry
        dpart = odl.uniform_partition([-30, -30], [30, 30], [200, 200])
        geom = tomo.CircularConeFlatGeometry(apart,
                                             dpart,
                                             src_radius=200,
                                             det_radius=100,
                                             axis=[1, 0, 0])

        # Ray transform
        return tomo.RayTransform(discr_reco_space, geom, impl=impl)

    elif geom == 'helical':
        # Discrete reconstruction space
        discr_reco_space = odl.uniform_discr([-20, -20, 0], [20, 20, 40],
                                             [100, 100, 100],
                                             dtype='float32')

        # Geometry
        # TODO: angles
        n_angle = 700
        apart = odl.uniform_partition(0, 8 * 2 * np.pi, n_angle)
        dpart = odl.uniform_partition([-30, -3], [30, 3], [200, 20])
        geom = tomo.HelicalConeFlatGeometry(apart,
                                            dpart,
                                            pitch=5.0,
                                            src_radius=200,
                                            det_radius=100)

        # Ray transform
        return tomo.RayTransform(discr_reco_space, geom, impl=impl)
    else:
        raise ValueError('param not valid')