Пример #1
0
def make_projector(n):
    # Discrete reconstruction space
    discr_reco_space = odl.uniform_discr([-20, -20, -20], [20, 20, 20],
                                         [n] * 3,
                                         dtype='float32')

    # Geometry
    src_rad = 1000
    det_rad = 100
    angle_intvl = odl.Interval(0, 2 * np.pi)
    dparams = odl.Rectangle([-50, -50], [50, 50])
    agrid = odl.uniform_sampling(angle_intvl, n)
    dgrid = odl.uniform_sampling(dparams, [n] * 2)
    geom = odl.tomo.CircularConeFlatGeometry(angle_intvl, dparams, src_rad,
                                             det_rad, agrid, dgrid)

    # X-ray transform
    projector = odl.tomo.XrayTransform(discr_reco_space,
                                       geom,
                                       backend='astra_cuda')
    phantom = projector.domain.one()
    projector._adjoint *= projector(phantom).inner(
        projector(phantom)) / phantom.inner(
            projector.adjoint(projector(phantom)))
    return 0.08 * projector
Пример #2
0
def test_proj():

    # `DiscreteLp` volume space
    vol_shape = (100,) * 3
    discr_vol_space = odl.uniform_discr([-50] * 3, [50] * 3, vol_shape,
                                        dtype='float32')

    # Angles: 0 and pi/2
    angle_intvl = odl.Interval(0, np.pi / 2)
    angle_grid = odl.uniform_sampling(angle_intvl, 2, as_midp=False)
    # agrid = angle_grid.points() / np.pi

    # Detector
    dparams = odl.Rectangle([-50] * 2, [50] * 2)
    det_grid = odl.uniform_sampling(dparams, (100, 100))

    def projector(index):

        axis = np.roll(np.array([1, 0, 0]), index)
        axis2 = np.roll(axis, 1)

        geom = odl.tomo.Parallel3dGeometry(angle_intvl, dparams, angle_grid,
                                           det_grid, axis=axis,
                                           origin_to_det=axis2)
        # Projection space
        proj_space = odl.FunctionSpace(geom.params)
        discr_data = odl.util.phantom.indicate_proj_axis(discr_vol_space, 0.5)

        # `DiscreteLp` projection space
        proj_shape = geom.grid.shape
        discr_proj_space = odl.uniform_discr_fromspace(proj_space, proj_shape,
                                                       dtype='float32')
        # Forward
        proj_data = odl.tomo.astra_cuda_forward_projector(
            discr_data, geom, discr_proj_space)
        return proj_data

    proj_data = projector(0)
    proj_data.show(indices=(0, np.s_[:], np.s_[:]))
    proj_data.show(indices=(1, np.s_[:], np.s_[:]))

    proj_data = projector(1)
    proj_data.show(indices=(0, np.s_[:], np.s_[:]))
    proj_data.show(indices=(1, np.s_[:], np.s_[:]))

    proj_data = projector(2)
    proj_data.show(indices=(0, np.s_[:], np.s_[:]))
    proj_data.show(indices=(1, np.s_[:], np.s_[:]))

    plt.show(block=True)
Пример #3
0
def test_nearest_interpolation_2d_string():
    rect = odl.Rectangle([0, 0], [1, 1])
    grid = odl.uniform_sampling(rect, [4, 2], as_midp=True)
    # Coordinate vectors are:
    # [0.125, 0.375, 0.625, 0.875], [0.25, 0.75]

    space = odl.FunctionSet(rect, odl.Strings(1))
    dspace = odl.Ntuples(grid.ntotal, dtype='U1')
    interp_op = NearestInterpolation(space, grid, dspace)
    values = np.array([c for c in 'mystring'])
    function = interp_op(values)

    # Evaluate at single point
    val = function([0.3, 0.6])  # closest to index (1, 1) -> 3
    assert val == 't'
    # Input array, with and without output array
    pts = np.array([[0.3, 0.6],
                    [1.0, 1.0]])
    true_arr = ['t', 'g']
    assert all_equal(function(pts.T), true_arr)
    out = np.empty(2, dtype='U1')
    function(pts.T, out=out)
    assert all_equal(out, true_arr)
    # Input meshgrid, with and without output array
    mg = sparse_meshgrid([0.3, 1.0], [0.4, 1.0])
    # Indices: (1, 3) x (0, 1)
    true_mg = [['s', 't'],
               ['n', 'g']]
    assert all_equal(function(mg), true_mg)
    out = np.empty((2, 2), dtype='U1')
    function(mg, out=out)
    assert all_equal(out, true_mg)
Пример #4
0
def test_init(exponent):
    # Validate that the different init patterns work and do not crash.
    space = odl.FunctionSpace(odl.Interval(0, 1))
    grid = odl.uniform_sampling(space.domain, 10)
    rn = odl.Rn(10, exponent=exponent)
    odl.DiscreteLp(space, grid, rn, exponent=exponent)

    # Normal discretization of unit interval with complex
    complex_space = odl.FunctionSpace(odl.Interval(0, 1),
                                      field=odl.ComplexNumbers())
    cn = odl.Cn(10, exponent=exponent)
    odl.DiscreteLp(complex_space, grid, cn, exponent=exponent)

    # Real space should not work with complex
    with pytest.raises(ValueError):
        odl.DiscreteLp(space, grid, cn)

    # Complex space should not work with reals
    with pytest.raises(ValueError):
        odl.DiscreteLp(complex_space, grid, rn)

    # Wrong size of underlying space
    rn_wrong_size = odl.Rn(20)
    with pytest.raises(ValueError):
        odl.DiscreteLp(space, grid, rn_wrong_size)
Пример #5
0
def test_collocation_interpolation_identity():
    # Check if interpolation followed by collocation on the same grid
    # is the identity
    rect = odl.Rectangle([0, 0], [1, 1])
    grid = odl.uniform_sampling(rect, [4, 2], as_midp=True)
    space = odl.FunctionSpace(rect)
    dspace = odl.Rn(grid.ntotal)

    # Testing 'C' and 'F' ordering and all interpolation schemes
    coll_op_c = GridCollocation(space, grid, dspace, order='C')
    coll_op_f = GridCollocation(space, grid, dspace, order='F')
    interp_ops_c = [
        NearestInterpolation(space, grid, dspace, order='C', variant='left'),
        NearestInterpolation(space, grid, dspace, order='C', variant='right'),
        LinearInterpolation(space, grid, dspace, order='C'),
        PerAxisInterpolation(space, grid, dspace, order='C',
                             schemes=['linear', 'nearest'])]
    interp_ops_f = [
        NearestInterpolation(space, grid, dspace, order='F', variant='left'),
        NearestInterpolation(space, grid, dspace, order='F', variant='right'),
        LinearInterpolation(space, grid, dspace, order='F'),
        PerAxisInterpolation(space, grid, dspace, order='F',
                             schemes=['linear', 'nearest'])]

    values = np.arange(1, 9, dtype='float64')

    for interp_op_c in interp_ops_c:
        ident_values = coll_op_c(interp_op_c(values))
        assert all_almost_equal(ident_values, values)

    for interp_op_f in interp_ops_f:
        ident_values = coll_op_f(interp_op_f(values))
        assert all_almost_equal(ident_values, values)
Пример #6
0
def test_nearest_interpolation_1d_complex():
    intv = odl.Interval(0, 1)
    grid = odl.uniform_sampling(intv, 5, as_midp=True)
    # Coordinate vectors are:
    # [0.1, 0.3, 0.5, 0.7, 0.9]

    space = odl.FunctionSpace(intv, field=odl.ComplexNumbers())
    dspace = odl.Cn(grid.ntotal)
    interp_op = NearestInterpolation(space, grid, dspace)
    function = interp_op([0 + 1j, 1 + 2j, 2 + 3j, 3 + 4j, 4 + 5j])

    # Evaluate at single point
    val = function(0.35)  # closest to index 1 -> 1 + 2j
    assert val == 1.0 + 2.0j
    # Input array, with and without output array
    pts = np.array([0.4, 0.0, 0.65, 0.95])
    true_arr = [1 + 2j, 0 + 1j, 3 + 4j, 4 + 5j]
    assert all_equal(function(pts), true_arr)
    # Should also work with a (1, N) array
    pts = pts[None, :]
    assert all_equal(function(pts), true_arr)
    out = np.empty(4, dtype='complex128')
    function(pts, out=out)
    assert all_equal(out, true_arr)
    # Input meshgrid, with and without output array
    # Same as array for 1d
    mg = sparse_meshgrid([0.4, 0.0, 0.65, 0.95])
    true_mg = [1 + 2j, 0 + 1j, 3 + 4j, 4 + 5j]
    assert all_equal(function(mg), true_mg)
    function(mg, out=out)
    assert all_equal(out, true_mg)
Пример #7
0
def test_nearest_interpolation_1d_variants():
    intv = odl.Interval(0, 1)
    grid = odl.uniform_sampling(intv, 5, as_midp=True)
    # Coordinate vectors are:
    # [0.1, 0.3, 0.5, 0.7, 0.9]

    space = odl.FunctionSpace(intv)
    dspace = odl.Rn(grid.ntotal)

    # 'left' variant
    interp_op = NearestInterpolation(space, grid, dspace, variant='left')
    function = interp_op([0, 1, 2, 3, 4])

    # Testing two midpoints and the extreme values
    pts = np.array([0.4, 0.8, 0.0, 1.0])
    true_arr = [1, 3, 0, 4]
    assert all_equal(function(pts), true_arr)

    # 'right' variant
    interp_op = NearestInterpolation(space, grid, dspace, variant='right')
    function = interp_op([0, 1, 2, 3, 4])

    # Testing two midpoints and the extreme values
    pts = np.array([0.4, 0.8, 0.0, 1.0])
    true_arr = [2, 4, 0, 4]
    assert all_equal(function(pts), true_arr)
Пример #8
0
def test_nearest_interpolation_2d_float():
    rect = odl.Rectangle([0, 0], [1, 1])
    grid = odl.uniform_sampling(rect, [4, 2], as_midp=True)
    # Coordinate vectors are:
    # [0.125, 0.375, 0.625, 0.875], [0.25, 0.75]

    space = odl.FunctionSpace(rect)
    dspace = odl.Rn(grid.ntotal)
    interp_op = NearestInterpolation(space, grid, dspace)
    function = interp_op([0, 1, 2, 3, 4, 5, 6, 7])

    # Evaluate at single point
    val = function([0.3, 0.6])  # closest to index (1, 1) -> 3
    assert val == 3.0
    # Input array, with and without output array
    pts = np.array([[0.3, 0.6],
                    [1.0, 1.0]])
    true_arr = [3, 7]
    assert all_equal(function(pts.T), true_arr)
    out = np.empty(2, dtype='float64')
    function(pts.T, out=out)
    assert all_equal(out, true_arr)
    # Input meshgrid, with and without output array
    mg = sparse_meshgrid([0.3, 1.0], [0.4, 1.0])
    # Indices: (1, 3) x (0, 1)
    true_mg = [[2, 3],
               [6, 7]]
    assert all_equal(function(mg), true_mg)
    out = np.empty((2, 2), dtype='float64')
    function(mg, out=out)
    assert all_equal(out, true_mg)
Пример #9
0
def test_reciprocal_grid_nd_halfcomplex():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    stride_last = 2 * np.pi / (s[-1] * n[-1])
    n[-1] = n[-1] // 2 + 1

    # Without shift
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == 0  # last dim is odd

    # With shift
    rgrid = reciprocal_grid(grid, shift=True, halfcomplex=True)
    assert all_equal(rgrid.shape, n)
    assert rgrid.max_pt[-1] == -stride_last / 2

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                            halfcx_parity='odd')
    assert irgrid.approx_equals(grid, atol=1e-6)

    with pytest.raises(ValueError):
        realspace_grid(rgrid, grid.min_pt, halfcomplex=True,
                       halfcx_parity='+')
Пример #10
0
def test_reciprocal_grid_nd_axes():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    axes_list = [[1, -1], [0], 0, [0, 2, 1], [2, 0]]

    for axes in axes_list:
        active = np.zeros(grid.ndim, dtype=bool)
        active[axes] = True
        inactive = np.logical_not(active)

        true_recip_stride = np.empty(grid.ndim)
        true_recip_stride[active] = 2 * np.pi / (s[active] * n[active])
        true_recip_stride[inactive] = s[inactive]

        # Without shift altogether
        rgrid = reciprocal_grid(grid, shift=False, axes=axes,
                                halfcomplex=False)

        assert all_equal(rgrid.shape, n)
        assert all_almost_equal(rgrid.stride, true_recip_stride)
        assert all_almost_equal(rgrid.min_pt[active], -rgrid.max_pt[active])
        assert all_equal(rgrid.min_pt[inactive], grid.min_pt[inactive])
        assert all_equal(rgrid.max_pt[inactive], grid.max_pt[inactive])

        # Inverting should give back the original
        irgrid = realspace_grid(rgrid, grid.min_pt, axes=axes,
                                halfcomplex=False)
        assert irgrid.approx_equals(grid, atol=1e-6)
Пример #11
0
def test_per_axis_interpolation():
    rect = odl.Rectangle([0, 0], [1, 1])
    grid = odl.uniform_sampling(rect, [4, 2], as_midp=True)
    # Coordinate vectors are:
    # [0.125, 0.375, 0.625, 0.875], [0.25, 0.75]

    space = odl.FunctionSpace(rect)
    dspace = odl.Rn(grid.ntotal)
    schemes = ['linear', 'nearest']
    variants = [None, 'right']
    interp_op = PerAxisInterpolation(space, grid, dspace, schemes=schemes,
                                     nn_variants=variants)
    values = np.arange(1, 9, dtype='float64')
    function = interp_op(values)
    rvals = values.reshape([4, 2])

    # Evaluate at single point
    val = function([0.3, 0.5])
    l1 = (0.3 - 0.125) / (0.375 - 0.125)
    # 0.5 equally far from both neighbors -> 'right' chooses 0.75
    true_val = (1 - l1) * rvals[0, 1] + l1 * rvals[1, 1]
    assert almost_equal(val, true_val)

    # Input array, with and without output array
    pts = np.array([[0.3, 0.6],
                    [0.1, 0.25],
                    [1.0, 1.0]])
    l1 = (0.3 - 0.125) / (0.375 - 0.125)
    true_val_1 = (1 - l1) * rvals[0, 1] + l1 * rvals[1, 1]
    l1 = (0.125 - 0.1) / (0.375 - 0.125)
    true_val_2 = (1 - l1) * rvals[0, 0]  # only lower left contributes
    l1 = (1.0 - 0.875) / (0.875 - 0.625)
    true_val_3 = (1 - l1) * rvals[3, 1]  # lower left only
    true_arr = [true_val_1, true_val_2, true_val_3]
    assert all_equal(function(pts.T), true_arr)

    out = np.empty(3, dtype='float64')
    function(pts.T, out=out)
    assert all_equal(out, true_arr)

    # Input meshgrid, with and without output array
    mg = sparse_meshgrid([0.3, 1.0], [0.4, 0.85])
    # Indices: (1, 3) x (0, 1)
    lx1 = (0.3 - 0.125) / (0.375 - 0.125)
    lx2 = (1.0 - 0.875) / (0.875 - 0.625)
    true_val_11 = (1 - lx1) * rvals[0, 0] + lx1 * rvals[1, 0]
    true_val_12 = ((1 - lx1) * rvals[0, 1] + lx1 * rvals[1, 1])
    true_val_21 = (1 - lx2) * rvals[3, 0]
    true_val_22 = (1 - lx2) * rvals[3, 1]
    true_mg = [[true_val_11, true_val_12],
               [true_val_21, true_val_22]]
    assert all_equal(function(mg), true_mg)
    out = np.empty((2, 2), dtype='float64')
    function(mg, out=out)
    assert all_equal(out, true_mg)
Пример #12
0
def test_yzproj():
    # `DiscreteLp` volume space
    vol_shape = (100,) * 3
    discr_vol_space = odl.uniform_discr([-50] * 3, [50] * 3, vol_shape,
                                        dtype='float32')

    # Angles: 0 and pi/2
    angle_intvl = odl.Interval(0, np.pi / 2)
    angle_grid = odl.uniform_sampling(angle_intvl, 2, as_midp=False)
    # agrid = angle_grid.points() / np.pi

    # Detector
    dparams = odl.Rectangle([-50] * 2, [50] * 2)
    det_grid = odl.uniform_sampling(dparams, (100, 100))

    axis = (0, 1, 0)
    origin_to_det = (0, 0, 1)
    geom = odl.tomo.Parallel3dGeometry(angle_intvl, dparams,
                                       angle_grid,
                                       det_grid, axis=axis,
                                       origin_to_det=origin_to_det)
    # Projection space
    proj_space = odl.FunctionSpace(geom.params)
    discr_data = odl.util.phantom.indicate_proj_axis(discr_vol_space, 0.5)

    # `DiscreteLp` projection space
    proj_shape = geom.grid.shape
    discr_proj_space = odl.uniform_discr_fromspace(proj_space,
                                                   proj_shape,
                                                   dtype='float32')
    # Forward
    proj_data = odl.tomo.astra_cuda_forward_projector(discr_data,
                                                      geom,

                                                      discr_proj_space)

    plt.switch_backend('qt4agg')
    proj_data.show(indices=np.s_[0, :, :])
    plt.show()
def make_projector(n):
    # Discrete reconstruction space
    discr_reco_space = odl.uniform_discr([-20, -20, -20], [20, 20, 20],
                                         [n]*3, dtype='float32')

    # Geometry
    src_rad = 1000
    det_rad = 100
    angle_intvl = odl.Interval(0, 2 * np.pi)
    dparams = odl.Rectangle([-50, -50], [50, 50])
    agrid = odl.uniform_sampling(angle_intvl, n)
    dgrid = odl.uniform_sampling(dparams, [n]*2)
    geom = odl.tomo.CircularConeFlatGeometry(angle_intvl, dparams,
                                             src_rad, det_rad,
                                             agrid, dgrid)

    # X-ray transform
    projector = odl.tomo.XrayTransform(discr_reco_space, geom,
                                       backend='astra_cuda')
    phantom = projector.domain.one()
    projector._adjoint *= projector(phantom).inner(projector(phantom)) / phantom.inner(projector.adjoint(projector(phantom)))
    return 0.08 * projector
Пример #14
0
def test_reciprocal_grid_1d(halfcomplex, shift, parity):

    shape = 10 if parity == 'even' else 11
    grid = odl.uniform_sampling(0, 1, shape=shape)
    s = grid.stride
    n = np.array(grid.shape)

    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=halfcomplex)

    # Independent of halfcomplex, shift and parity
    true_recip_stride = 2 * np.pi / (s * n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)

    if halfcomplex:
        assert all_equal(rgrid.shape, n // 2 + 1)

        if parity == 'odd' and shift:
            # Max point should be half a negative recip stride
            assert all_almost_equal(rgrid.max_pt, -true_recip_stride / 2)
        elif parity == 'even' and not shift:
            # Max point should be half a positive recip stride
            assert all_almost_equal(rgrid.max_pt, true_recip_stride / 2)
        elif (parity == 'odd' and not shift) or (parity == 'even' and shift):
            # Max should be zero
            assert all_almost_equal(rgrid.max_pt, 0)
        else:
            raise RuntimeError('parameter combination not covered')
    else:  # halfcomplex = False
        assert all_equal(rgrid.shape, n)

        if (parity == 'even' and shift) or (parity == 'odd' and not shift):
            # Zero should be at index n // 2
            assert all_almost_equal(rgrid[n // 2], 0)
        elif (parity == 'odd' and shift) or (parity == 'even' and not shift):
            # No point should be closer to 0 than half a recip stride
            atol = 0.999 * true_recip_stride / 2
            assert not rgrid.approx_contains(0, atol=atol)
        else:
            raise RuntimeError('parameter combination not covered')

        if not shift:
            # Grid Should be symmetric
            assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)
            if parity == 'odd':
                # Midpoint should be 0
                assert all_almost_equal(rgrid.mid_pt, 0)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=halfcomplex,
                            halfcx_parity=parity)
    assert irgrid.approx_equals(grid, atol=1e-6)
Пример #15
0
def test_reciprocal_grid_nd():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)

    true_recip_stride = 2 * np.pi / (s * n)

    # Without shift altogether
    rgrid = reciprocal_grid(grid, shift=False, halfcomplex=False)

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt, -rgrid.max_pt)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)
Пример #16
0
def test_linear_interpolation_1d():
    intv = odl.Interval(0, 1)
    grid = odl.uniform_sampling(intv, 5, as_midp=True)
    # Coordinate vectors are:
    # [0.1, 0.3, 0.5, 0.7, 0.9]

    space = odl.FunctionSpace(intv)
    dspace = odl.Rn(grid.ntotal)
    interp_op = LinearInterpolation(space, grid, dspace)
    function = interp_op([1, 2, 3, 4, 5])

    # Evaluate at single point
    val = function(0.35)
    true_val = 0.75 * 2 + 0.25 * 3
    assert almost_equal(val, true_val)

    # Input array, with and without output array
    pts = np.array([0.4, 0.0, 0.65, 0.95])
    true_arr = [2.5, 0.5, 3.75, 3.75]
    assert all_almost_equal(function(pts), true_arr)
Пример #17
0
def test_reciprocal_grid_nd_shift_list():

    grid = odl.uniform_sampling([0] * 3, [1] * 3, shape=(3, 4, 5))
    s = grid.stride
    n = np.array(grid.shape)
    shift = [False, True, False]

    true_recip_stride = 2 * np.pi / (s * n)

    # Shift only the even dimension, then zero must be contained
    rgrid = reciprocal_grid(grid, shift=shift, halfcomplex=False)
    noshift = np.where(np.logical_not(shift))

    assert all_equal(rgrid.shape, n)
    assert all_almost_equal(rgrid.stride, true_recip_stride)
    assert all_almost_equal(rgrid.min_pt[noshift], -rgrid.max_pt[noshift])
    assert all_almost_equal(rgrid[n // 2], [0] * 3)

    # Inverting should give back the original
    irgrid = realspace_grid(rgrid, grid.min_pt, halfcomplex=False)
    assert irgrid.approx_equals(grid, atol=1e-6)
        return odl.ReductionOperator(odl.MultiplyOperator(scale0),
                                     odl.MultiplyOperator(scale1))


n = 200

# Discrete reconstruction space
discr_reco_space = odl.uniform_discr([-20, -20, -20], [20, 20, 20],
                                     [n]*3, dtype='float32')

# Geometry
src_rad = 1000
det_rad = 100
angle_intvl = odl.Interval(0, 2 * np.pi)
dparams = odl.Rectangle([-50, -50], [50, 50])
agrid = odl.uniform_sampling(angle_intvl, n)
dgrid = odl.uniform_sampling(dparams, [n]*2)
geom = odl.tomo.CircularConeFlatGeometry(angle_intvl, dparams,
                                         src_rad, det_rad,
                                         agrid, dgrid)

# X-ray transform
proj = odl.tomo.DiscreteXrayTransform(discr_reco_space, geom,
                                      backend='astra_cuda')


# Create phantom
phantom0 = odl.util.shepp_logan(discr_reco_space, True)
phantom1 = odl.util.derenzo_sources(discr_reco_space)

# Adjoint currently bugged, needs to be fixed
Пример #19
0
    plt.close()


# Create `DiscreteLp` space for volume data
vol_shape = (100, 110)
discr_vol_space = odl.uniform_discr([-1, -1.1], [1, 1.1], vol_shape,
                                    dtype='float32')

# Create an element in the volume space
discr_vol_data = odl.util.phantom.cuboid(discr_vol_space, 0.2, 0.3)

save_slice(discr_vol_data, 'phantom 2d cpu')

# Angles
angle_intvl = odl.Interval(0, 2 * np.pi)
angle_grid = odl.uniform_sampling(angle_intvl, 180)

# Detector
dparams = odl.Interval(-2, 2)
det_grid = odl.uniform_sampling(dparams, 100)

# Create geometry instances for the projection space parameter
geom = odl.tomo.Parallel2dGeometry(angle_intvl, dparams, angle_grid,
                                   det_grid)

# Projection space
proj_space = odl.FunctionSpace(geom.params)

# `DiscreteLp` projection space
discr_proj_space = odl.uniform_discr_fromspace(proj_space, geom.grid.shape,
                                               dtype='float32',
Пример #20
0
# vpts = 5
xx = 5.5
vpts = 11
# xx = 5.25
# vpts = 21
# xx = 8
# vpts = 16
# xx = 6
# vpts = 6
discr_vol_space_2d = odl.uniform_discr([-xx] * 2, [xx] * 2, [vpts] * 2,
                                       dtype='float32')
discr_vol_space_3d = odl.uniform_discr([-xx] * 3, [xx] * 3, [vpts] * 3,
                                       dtype='float32')

# Angle grid
agrid = odl.uniform_sampling(-.25 * np.pi, 0.75 * np.pi, 2)
astride = float(agrid.stride)
num_angle = agrid.size

# Detector grid
# dx = 11
# dpts = 11
dx = 10.5
dpts = 21
# dx = 5.5
# dpts = 11
# dx = 5.25
# dpts = 21
dgrid_2d = odl.uniform_sampling(-dx, dx, dpts)
dy = 1.0 * dx
dgrid_3d = odl.uniform_sampling([-dx, -dy], [dx, dy], [dpts] * 2)
Пример #21
0
def test_init_cuda(exponent):
    # Normal discretization of unit interval
    space = odl.FunctionSpace(odl.Interval(0, 1))
    grid = odl.uniform_sampling(space.domain, 10)
    rn = odl.CudaRn(10, exponent=exponent)
    odl.DiscreteLp(space, grid, rn, exponent=exponent)
Пример #22
0
def numba_example():
    # Some functions are not easily vectorized, here we can use Numba to
    # improve performance.
    # See http://numba.pydata.org/

    try:
        import numba
    except ImportError:
        print('Numba not installed, skipping.')
        return

    def myfunc(x):
        """Return x - y if x > y, otherwise return x + y."""
        if x[0] > x[1]:
            return x[0] - x[1]
        else:
            return x[0] + x[1]

    # Numba expects functions f(x1, x2, x3, ...), while we have the
    # convention f(x) with x = (x1, x2, x3, ...). Therefore we need
    # to wrap the Numba-vectorized function.
    vectorized = numba.vectorize(lambda x, y: x - y if x > y else x + y)

    def myfunc_vec(x):
        """Return x - y if x > y, otherwise return x + y."""
        return vectorized(x[0], x[1])

    def myfunc_native_vec(x):
        """Return x - y if x > y, otherwise return x + y."""
        # This implementation uses Numpy's fast built-in vectorization
        # directly. The function np.where checks the condition in the
        # first argument and takes the values from the second argument
        # for all entries where the condition is `True`, otherwise
        # the values from the third argument are taken. The arrays are
        # automatically broadcast, i.e. the broadcast shape of the
        # condition expression determines the output shape.
        return np.where(x[0] > x[1], x[0] - x[1], x[0] + x[1])

    # Create (continuous) functions in the space of function defined
    # on the rectangle [0, 1] x [0, 1].
    fspace = odl.FunctionSpace(odl.Rectangle([0, 0], [1, 1]))
    f_default = fspace.element(myfunc, vectorized=False)
    f_numba = fspace.element(myfunc_vec)
    f_native = fspace.element(myfunc_native_vec, vectorized=True)

    # Create a unform grid in [0, 1] x [0, 1] (fspace.domain) with 2000
    # samples per dimension.
    grid = odl.uniform_sampling(fspace.domain, [2000, 2000])
    # The points() method really creates all grid points (2000^2) and
    # stores them one-by-one (row-wise) in a large array with shape
    # (2000*2000, 2). Since the function expects points[i] to be the
    # array of i-th components of all points, we need to transpose.
    points = grid.points().T
    # The meshgrid property only returns a sparse representation of the
    # grid, a tuple whose i-th entry is the vector of all possible i-th
    # components in the grid (2000). Extra dimensions are added to the
    # vector in order to support automatic broadcasting. This is both
    # faster and more memory-friendly than creating the full point array.
    # See the numpy.meshgrid function for more information.
    mesh = grid.meshgrid  # Returns a sparse meshgrid (2000 * 2)

    print('Non-Vectorized runtime (points):      {:5f}'
          ''.format(timeit.timeit(lambda: f_default(points), number=1)))
    print('Non-Vectorized runtime (meshgrid):    {:5f}'
          ''.format(timeit.timeit(lambda: f_default(mesh), number=1)))
    print('Numba vectorized runtime (points):    {:5f}'
          ''.format(timeit.timeit(lambda: f_numba(points), number=1)))
    print('Numba vectorized runtime (meshgrid):  {:5f}'
          ''.format(timeit.timeit(lambda: f_numba(mesh), number=1)))
    print('Native vectorized runtime (points):   {:5f}'
          ''.format(timeit.timeit(lambda: f_native(points), number=1)))
    print('Native vectorized runtime (meshgrid): {:5f}'
          ''.format(timeit.timeit(lambda: f_native(mesh), number=1)))
Пример #23
0
              indices=[slice(None), y, slice(None)])
    data.show('imshow',
              saveto=pth.join(path, '{}_x{:03d}.png'.format(
                      name.replace(' ', '_'), x)),
              title='{} [{},:,:]'.format(name, x),
              indices=[x, slice(None), slice(None)])

    plt.close('all')

# `DiscreteLp` volume space
vol_shape = (80, 70, 60)
discr_vol_space = odl.uniform_discr([-40, -35, -30], [40, 35, 30],
                                    vol_shape, dtype='float32')
# Angles
angle_intvl = odl.Interval(0, 2 * np.pi)
angle_grid = odl.uniform_sampling(angle_intvl, 90, as_midp=False)

# Detector
dparams = odl.Rectangle([-50, -45], [50, 45])
det_grid = odl.uniform_sampling(dparams, (100, 90))

# Cone beam parameter
src_rad = 1000
det_rad = 10
pitch_factor = 0

# Create an element in the volume space
# discr_data = odl.util.phantom.cuboid(discr_vol_space,
#                                      (0.1, 0.15, 0.2,), (0.4, 0.35, 0.3))
discr_data = odl.util.phantom.indicate_proj_axis(discr_vol_space)
sli = 0.5
Пример #24
0
def test_linear_interpolation_2d():
    rect = odl.Rectangle([0, 0], [1, 1])
    grid = odl.uniform_sampling(rect, [4, 2], as_midp=True)
    # Coordinate vectors are:
    # [0.125, 0.375, 0.625, 0.875], [0.25, 0.75]

    space = odl.FunctionSpace(rect)
    dspace = odl.Rn(grid.ntotal)
    interp_op = LinearInterpolation(space, grid, dspace)
    values = np.arange(1, 9, dtype='float64')
    function = interp_op(values)
    rvals = values.reshape([4, 2])

    # Evaluate at single point
    val = function([0.3, 0.6])
    l1 = (0.3 - 0.125) / (0.375 - 0.125)
    l2 = (0.6 - 0.25) / (0.75 - 0.25)
    true_val = ((1 - l1) * (1 - l2) * rvals[0, 0] +
                (1 - l1) * l2 * rvals[0, 1] +
                l1 * (1 - l2) * rvals[1, 0] +
                l1 * l2 * rvals[1, 1])
    assert almost_equal(val, true_val)

    # Input array, with and without output array
    pts = np.array([[0.3, 0.6],
                    [0.1, 0.25],
                    [1.0, 1.0]])
    l1 = (0.3 - 0.125) / (0.375 - 0.125)
    l2 = (0.6 - 0.25) / (0.75 - 0.25)
    true_val_1 = ((1 - l1) * (1 - l2) * rvals[0, 0] +
                  (1 - l1) * l2 * rvals[0, 1] +
                  l1 * (1 - l2) * rvals[1, 0] +
                  l1 * l2 * rvals[1, 1])
    l1 = (0.125 - 0.1) / (0.375 - 0.125)
    # l2 = 0
    true_val_2 = (1 - l1) * rvals[0, 0]  # only lower left contributes
    l1 = (1.0 - 0.875) / (0.875 - 0.625)
    l2 = (1.0 - 0.75) / (0.75 - 0.25)
    true_val_3 = (1 - l1) * (1 - l2) * rvals[3, 1]  # lower left only
    true_arr = [true_val_1, true_val_2, true_val_3]
    assert all_equal(function(pts.T), true_arr)

    out = np.empty(3, dtype='float64')
    function(pts.T, out=out)
    assert all_equal(out, true_arr)

    # Input meshgrid, with and without output array
    mg = sparse_meshgrid([0.3, 1.0], [0.4, 0.75])
    # Indices: (1, 3) x (0, 1)
    lx1 = (0.3 - 0.125) / (0.375 - 0.125)
    lx2 = (1.0 - 0.875) / (0.875 - 0.625)
    ly1 = (0.4 - 0.25) / (0.75 - 0.25)
    # ly2 = 0
    true_val_11 = ((1 - lx1) * (1 - ly1) * rvals[0, 0] +
                   (1 - lx1) * ly1 * rvals[0, 1] +
                   lx1 * (1 - ly1) * rvals[1, 0] +
                   lx1 * ly1 * rvals[1, 1])
    true_val_12 = ((1 - lx1) * rvals[0, 1] + lx1 * rvals[1, 1])  # ly2 = 0
    true_val_21 = ((1 - lx2) * (1 - ly1) * rvals[3, 0] +
                   (1 - lx2) * ly1 * rvals[3, 1])  # high node 1.0, no upper
    true_val_22 = (1 - lx2) * rvals[3, 1]  # ly2 = 0, no upper for 1.0
    true_mg = [[true_val_11, true_val_12],
               [true_val_21, true_val_22]]
    assert all_equal(function(mg), true_mg)
    out = np.empty((2, 2), dtype='float64')
    function(mg, out=out)
    assert all_equal(out, true_mg)
Пример #25
0
def test_xray_trafo_parallel2d():
    """3D parallel-beam discrete X-ray transform with ASTRA CUDA."""

    # Discrete reconstruction space
    xx = 5
    nn = 5
    # xx = 5.5
    # nn = 11
    discr_vol_space = odl.uniform_discr([-xx] * 2, [xx] * 2, [nn] * 2,
                                        dtype='float32')

    # Angle
    angle_intvl = odl.Interval(0, 2 * np.pi) - np.pi / 4
    agrid = odl.uniform_sampling(angle_intvl, 4)

    # Detector
    yy = 11
    mm = 11
    # yy = 10.5
    # mm = 21
    dparams = odl.Interval(-yy, yy)
    dgrid = odl.uniform_sampling(dparams, mm)

    # Geometry
    geom = odl.tomo.Parallel2dGeometry(angle_intvl, dparams, agrid, dgrid)

    # Projection space
    proj_space = odl.FunctionSpace(geom.params)

    # `DiscreteLp` projection space
    proj_shape = geom.grid.shape
    discr_proj_space = odl.uniform_discr_fromspace(proj_space, proj_shape,
                                                   dtype='float32')

    # X-ray transform
    A = odl.tomo.XrayTransform(discr_vol_space, geom,
                               backend='astra_cuda')

    # Domain element
    f = A.domain.one()

    # Forward projection
    Af = A(f)
    A0f = odl.tomo.astra_cuda_forward_projector(f, geom,
                                                discr_proj_space)

    # Range element
    g = A.range.one()

    # Back projection
    Adg = A.adjoint(g)
    Adg0 = odl.tomo.astra_cuda_back_projector(g, geom,
                                              discr_vol_space)

    print('\nvol stride', discr_vol_space.grid.stride)
    print('proj stride', geom.grid.stride)
    print('angle intv:', angle_intvl.size)
    # f = discr_vol_space3.one()
    # print(f.asarray()[:, :, np.round(f.shape[2]/2)])
    print('forward')
    print(Af.asarray()[0])
    print(A0f.asarray()[0])
    print('backward')
    print(Adg.asarray() / float(agrid.stride) / agrid.ntotal)
    print(Adg0.asarray() / agrid.ntotal)
Пример #26
0

# Create `DiscreteLp` space for volume data
vol_shape = (100, 110)
discr_vol_space = odl.uniform_discr([-1, -1.1], [1, 1.1],
                                    vol_shape,
                                    dtype='float32')

# Create an element in the volume space
discr_vol_data = odl.util.phantom.cuboid(discr_vol_space, 0.2, 0.3)

save_slice(discr_vol_data, 'phantom 2d cpu')

# Angles
angle_intvl = odl.Interval(0, 2 * np.pi)
angle_grid = odl.uniform_sampling(angle_intvl, 180)

# Detector
dparams = odl.Interval(-2, 2)
det_grid = odl.uniform_sampling(dparams, 100)

# Create geometry instances for the projection space parameter
geom = odl.tomo.Parallel2dGeometry(angle_intvl, dparams, angle_grid, det_grid)

# Projection space
proj_space = odl.FunctionSpace(geom.params)

# `DiscreteLp` projection space
discr_proj_space = odl.uniform_discr_fromspace(proj_space,
                                               geom.grid.shape,
                                               dtype='float32',