Пример #1
0
    def test_booleans(self):
        """Test to ensure boolean flags trigger as expected.
    """

        flags_core.parse_flags([__file__, "--use_synthetic_data"])

        assert flags.FLAGS.use_synthetic_data
Пример #2
0
    def test_benchmark_setting(self):
        defaults = dict(
            hooks=["LoggingMetricHook"],
            benchmark_log_dir="/tmp/12345",
            gcp_project="project_abc",
        )

        flags_core.set_defaults(**defaults)
        flags_core.parse_flags()

        for key, value in defaults.items():
            assert flags.FLAGS.get_flag_value(name=key, default=None) == value
Пример #3
0
    def test_default_setting(self):
        """Test to ensure fields exist and defaults can be set.
    """

        defaults = dict(data_dir="dfgasf",
                        model_dir="dfsdkjgbs",
                        train_epochs=534,
                        epochs_between_evals=15,
                        batch_size=256,
                        hooks=["LoggingTensorHook"],
                        num_parallel_calls=18,
                        inter_op_parallelism_threads=5,
                        intra_op_parallelism_threads=10,
                        data_format="channels_first")

        flags_core.set_defaults(**defaults)
        flags_core.parse_flags()

        for key, value in defaults.items():
            assert flags.FLAGS.get_flag_value(name=key, default=None) == value
Пример #4
0
def run_synthetic(main, tmp_root, extra_flags=None, synth=True, max_train=1):
    """Performs a minimal run of a model.

    This function is intended to test for syntax errors throughout a model. A
  very limited run is performed using synthetic data.

  Args:
    main: The primary function used to exercise a code path. Generally this
      function is "<MODULE>.main(argv)".
    tmp_root: Root path for the temp directory created by the test class.
    extra_flags: Additional flags passed by the caller of this function.
    synth: Use synthetic data.
    max_train: Maximum number of allowed training steps.
  """

    extra_flags = [] if extra_flags is None else extra_flags

    model_dir = tempfile.mkdtemp(dir=tmp_root)

    args = [
        sys.argv[0], "--model_dir", model_dir, "--train_epochs", "1",
        "--epochs_between_evals", "1"
    ] + extra_flags

    if synth:
        args.append("--use_synthetic_data")

    if max_train is not None:
        args.extend(["--max_train_steps", str(max_train)])

    try:
        flags_core.parse_flags(argv=args)
        main(flags.FLAGS)
    finally:
        if os.path.exists(model_dir):
            shutil.rmtree(model_dir)
Пример #5
0
    def test_parse_dtype_info(self):
        for dtype_str, tf_dtype, loss_scale in [["fp16", tf.float16, 128],
                                                ["fp32", tf.float32, 1]]:
            flags_core.parse_flags([__file__, "--dtype", dtype_str])

            self.assertEqual(flags_core.get_tf_dtype(flags.FLAGS), tf_dtype)
            self.assertEqual(flags_core.get_loss_scale(flags.FLAGS),
                             loss_scale)

            flags_core.parse_flags(
                [__file__, "--dtype", dtype_str, "--loss_scale", "5"])

            self.assertEqual(flags_core.get_loss_scale(flags.FLAGS), 5)

        with self.assertRaises(SystemExit):
            flags_core.parse_flags([__file__, "--dtype", "int8"])