Пример #1
0
def compute_loss(pred_encoded, gt_encoded, loss_weights=[1., 1., 1., 1.]):

    # Expand tuples
    score, pos_offsets, dim_offsets, ang_offsets = pred_encoded
    heatmaps, gt_pos_offsets, gt_dim_offsets, gt_ang_offsets, mask = gt_encoded
    score_weight, pos_weight, dim_weight, ang_weight = loss_weights

    # Compute losses
    score_loss = huber_loss(score, heatmaps)
    pos_loss = huber_loss(pos_offsets, gt_pos_offsets, mask.unsqueeze(2))
    dim_loss = huber_loss(dim_offsets, gt_dim_offsets, mask.unsqueeze(2))
    ang_loss = huber_loss(ang_offsets, gt_ang_offsets, mask.unsqueeze(2))

    # Combine loss
    total_loss = score_loss * score_weight + pos_loss * pos_weight \
            + dim_loss * dim_weight + ang_loss * ang_weight

    # Store scalar losses in a dictionary
    loss_dict = {
        'score': float(score_loss),
        'position': float(pos_loss),
        'dimension': float(dim_loss),
        'angle': float(ang_loss),
        'total': float(total_loss)
    }

    total_loss = score_loss
    return total_loss, loss_dict
Пример #2
0
def compute_loss(pred_encoded, gt_encoded, loss_weights=[1., 1., 1., 1.]):

    # Expand tuples
    score, pos_offsets, dim_offsets, ang_offsets = pred_encoded
    labels, sqr_dists, gt_pos_offsets, gt_dim_offsets, gt_ang_offsets = gt_encoded
    score_weight, pos_weight, dim_weight, ang_weight = loss_weights

    # Compute losses
    score_loss = oft.model.loss.balanced_cross_entropy_loss(score, labels)

    pos_loss = huber_loss(pos_offsets, gt_pos_offsets, labels.unsqueeze(2))
    dim_loss = huber_loss(dim_offsets, gt_dim_offsets, labels.unsqueeze(2))
    ang_loss = huber_loss(ang_offsets, gt_ang_offsets, labels.unsqueeze(2))

    # Combine loss
    total_loss = score_loss * score_weight + pos_loss * pos_weight \
            + dim_loss * dim_weight + ang_loss * ang_weight

    # Store scalar losses in a dictionary
    loss_dict = {
        'score': float(score_loss),
        'position': float(pos_loss),
        'dimension': float(dim_loss),
        'angle': float(ang_loss),
        'total': float(total_loss)
    }

    total_loss = score_loss
    return total_loss, loss_dict