Пример #1
0
    def test_vdr(self, class_case_dir):

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')

        hef_file = get_demo_file('Hintereisferner_RGI5.shp')

        gdir = workflow.init_glacier_directories(gpd.read_file(hef_file))[0]

        exps = ['ERA5', 'ERA5dr']
        files = []
        ref_hgts = []
        for base in exps:
            cfg.PARAMS['baseline_climate'] = base
            tasks.process_climate_data(gdir, output_filesuffix=base)
            files.append(
                gdir.get_filepath('climate_historical', filesuffix=base))
            with xr.open_dataset(files[-1]) as ds:
                ref_hgts.append(ds.ref_hgt)
                assert ds.ref_pix_dis < 10000

        with xr.open_dataset(files[0]) as d1, xr.open_dataset(files[1]) as d2:
            np.testing.assert_allclose(d1.temp, d2.temp)
            np.testing.assert_allclose(d1.prcp, d2.prcp)
            # Fake tests, the plots look plausible
            np.testing.assert_allclose(d2.gradient.mean(), -0.0058, atol=.001)
            np.testing.assert_allclose(d2.temp_std.mean(), 3.35, atol=0.1)
Пример #2
0
    def test_ecmwf_workflow(self, class_case_dir):

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')

        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        gdir = workflow.init_glacier_directories(gpd.read_file(hef_file))[0]

        cfg.PARAMS['baseline_climate'] = 'CERA+ERA5L'
        tasks.process_climate_data(gdir)
        f_ref = gdir.get_filepath('climate_historical')
        with xr.open_dataset(f_ref) as his:
            # Let's do some basic checks
            ci = gdir.get_climate_info()
            assert ci['baseline_climate_source'] == 'CERA+ERA5L'
            assert ci['baseline_hydro_yr_0'] == 1902
            assert ci['baseline_hydro_yr_1'] == 2018

        cfg.PARAMS['baseline_climate'] = 'CERA|ERA5'
        tasks.process_climate_data(gdir)
        f_ref = gdir.get_filepath('climate_historical')
        with xr.open_dataset(f_ref) as his:
            # Let's do some basic checks
            ci = gdir.get_climate_info()
            assert ci['baseline_climate_source'] == 'CERA|ERA5'
            assert ci['baseline_hydro_yr_0'] == 1902
            assert ci['baseline_hydro_yr_1'] == 2010
Пример #3
0
def init_columbia(reset=False):

    from oggm.core import gis, climate, centerlines
    import geopandas as gpd

    # test directory
    testdir = os.path.join(get_test_dir(), 'tmp_columbia')
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True

    # Init
    cfg.initialize()
    cfg.PATHS['working_dir'] = testdir
    cfg.PARAMS['use_intersects'] = False
    cfg.PATHS['dem_file'] = get_demo_file('dem_Columbia.tif')
    cfg.PARAMS['border'] = 10

    entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0]
    gdir = oggm.GlacierDirectory(entity, reset=reset)
    if gdir.has_file('climate_historical'):
        return gdir

    gis.define_glacier_region(gdir)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.initialize_flowlines(gdir)
    centerlines.compute_downstream_line(gdir)
    centerlines.catchment_area(gdir)
    centerlines.catchment_intersections(gdir)
    centerlines.catchment_width_geom(gdir)
    centerlines.catchment_width_correction(gdir)
    tasks.process_dummy_cru_file(gdir, seed=0)
    return gdir
Пример #4
0
def test_ice_cap():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_icecap')
    utils.mkdir(testdir)

    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-05.08389.tif')
    cfg.PARAMS['border'] = 20
    cfg.set_divides_db(get_demo_file('divides_RGI50-05.08389.shp'))

    hef_file = get_demo_file('RGI50-05.08389.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have five groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group))==5

    # This just checks that it works
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir, ax=ax, add_intersects=True,
                                  add_touches=True)
    fig.tight_layout()
    return fig
Пример #5
0
def test_multiple_inversion():

    # test directory
    testdir = os.path.join(get_test_dir(), 'tmp_mdir')
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['run_mb_calibration'] = True
    cfg.PARAMS['baseline_climate'] = 'CUSTOM'
    cfg.PATHS['working_dir'] = testdir

    # Get the RGI ID
    hef_rgi = gpd.read_file(get_demo_file('divides_hef.shp'))
    hef_rgi.loc[0, 'RGIId'] = 'RGI50-11.00897'

    gdirs = workflow.init_glacier_regions(hef_rgi)
    workflow.gis_prepro_tasks(gdirs)
    workflow.climate_tasks(gdirs)
    workflow.inversion_tasks(gdirs)

    fig, ax = plt.subplots()
    graphics.plot_inversion(gdirs, ax=ax)
    fig.tight_layout()
    shutil.rmtree(testdir)
    return fig
Пример #6
0
    def test_distribute_climate(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        gdirs = []

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)

        with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r:
            ref_h = nc_r.variables['hgt'][1, 1]
            ref_p = nc_r.variables['prcp'][:, 1, 1]
            ref_p *= cfg.PARAMS['prcp_scaling_factor']
            ref_t = nc_r.variables['temp'][:, 1, 1]

        with netCDF4.Dataset(os.path.join(gdir.dir,
                                          'climate_monthly.nc')) as nc_r:
            self.assertTrue(ref_h == nc_r.ref_hgt)
            np.testing.assert_allclose(ref_t, nc_r.variables['temp'][:])
            np.testing.assert_allclose(ref_p, nc_r.variables['prcp'][:])
Пример #7
0
def test_nodivide():

    # test directory
    testdir = TESTDIR_BASE + '_nodiv'
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    hef_file = get_demo_file('Hintereisferner.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)

    fig, ax = plt.subplots()
    graphics.plot_centerlines(gdir, ax=ax)
    fig.tight_layout()
    return fig
Пример #8
0
def up_to_climate(reset=False):
    """Run the tasks you want."""

    # test directory
    if not os.path.exists(_TEST_DIR):
        os.makedirs(_TEST_DIR)
    if reset:
        clean_dir(_TEST_DIR)

    if not os.path.exists(CLI_LOGF):
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('none', f)

    # Init
    cfg.initialize()

    # Use multiprocessing
    cfg.PARAMS['use_multiprocessing'] = use_multiprocessing()

    # Working dir
    cfg.PATHS['working_dir'] = _TEST_DIR
    cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif')
    cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))

    # Read in the RGI file
    rgi_file = get_demo_file('rgi_oetztal.shp')
    rgidf = gpd.read_file(rgi_file)

    # Make a fake marine and lake terminating glacier
    cfg.PARAMS['tidewater_type'] = 4  # make lake also calve
    rgidf.loc[0, 'GlacType'] = '0199'
    rgidf.loc[1, 'GlacType'] = '0299'

    # Use RGI6
    rgidf['RGIId'] = [s.replace('RGI50', 'RGI60') for s in rgidf.RGIId]

    # Be sure data is downloaded
    cru.get_cru_cl_file()

    # Params
    cfg.PARAMS['border'] = 70
    cfg.PARAMS['tstar_search_window'] = [1902, 0]
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    cfg.PARAMS['use_kcalving_for_inversion'] = True
    cfg.PARAMS['use_kcalving_for_run'] = True

    # Go
    gdirs = workflow.init_glacier_directories(rgidf)

    try:
        tasks.catchment_width_correction(gdirs[0])
    except Exception:
        reset = True

    if reset:
        # First preprocessing tasks
        workflow.gis_prepro_tasks(gdirs)

    return gdirs
Пример #9
0
    def setUp(self):
        """Instance the TestCase, create the test directory,
        OGGM initialisation and setting paths and parameters.

        Most input files, like the DEM, the climate file and the glacier
        outline, come from the oggm-sample-data repository and my hence be
        outdated. The test are performed on Hintereisferner (RGI60-11.00897),
        running with HISTALP climate data and the matching mass balance
        calibration parameters.
        """

        # test directory
        self.testdir = os.path.join(get_test_dir(), 'tmp_vas')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # load default parameter file and set working directory
        vascaling.initialize()
        cfg.PATHS['working_dir'] = self.testdir
        # set path to GIS files
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        # set parameters for climate file and mass balance calibration
        cfg.PARAMS['baseline_climate'] = 'CUSTOM'
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['run_mb_calibration'] = True
        # adjust parameters for HistAlp climate
        cfg.PARAMS['prcp_scaling_factor'] = 2.5
        cfg.PARAMS['temp_melt'] = -0.5
        cfg.PARAMS['temp_all_solid'] = 0.

        # coveralls.io has issues if multiprocessing is enabled
        cfg.PARAMS['use_multiprocessing'] = False
Пример #10
0
def test_nodivide_corrected():

    # test directory
    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_nodiv')
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    hef_file = get_demo_file('Hintereisferner_RGI5.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir, ax=ax, corrected=True,
                                  add_intersects=True, add_touches=True)
    fig.tight_layout()

    shutil.rmtree(testdir)
    return fig
Пример #11
0
    def test_mu_candidates(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        gdirs.append(gdir)
        climate.process_histalp_nonparallel(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        se = gdir.read_pickle("mu_candidates")[2.5]
        self.assertTrue(se.index[0] == 1802)
        self.assertTrue(se.index[-1] == 2003)

        df = pd.DataFrame()
        df["mu"] = se

        # Check that the moovin average of temp is negatively correlated
        # with the mus
        with netCDF4.Dataset(get_demo_file("histalp_merged_hef.nc")) as nc_r:
            ref_t = nc_r.variables["temp"][:, 1, 1]
        ref_t = np.mean(ref_t.reshape((len(df), 12)), 1)
        ma = np.convolve(ref_t, np.ones(31) / float(31), "same")
        df["temp"] = ma
        df = df.dropna()
        self.assertTrue(np.corrcoef(df["mu"], df["temp"])[0, 1] < -0.75)
Пример #12
0
    def test_distribute_climate_parallel(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gdirs.append(gdir)
        climate.process_custom_climate_data(gdir)

        ci = gdir.read_pickle("climate_info")
        self.assertEqual(ci["hydro_yr_0"], 1802)
        self.assertEqual(ci["hydro_yr_1"], 2003)

        with netCDF4.Dataset(get_demo_file("histalp_merged_hef.nc")) as nc_r:
            ref_h = nc_r.variables["hgt"][1, 1]
            ref_p = nc_r.variables["prcp"][:, 1, 1]
            ref_t = nc_r.variables["temp"][:, 1, 1]

        with netCDF4.Dataset(os.path.join(gdir.dir, "climate_monthly.nc")) as nc_r:
            self.assertTrue(ref_h == nc_r.ref_hgt)
            np.testing.assert_allclose(ref_t, nc_r.variables["temp"][:])
            np.testing.assert_allclose(ref_p, nc_r.variables["prcp"][:])
Пример #13
0
def init_columbia_eb(dir_name, reset=False):

    from oggm.core import gis, centerlines
    import geopandas as gpd

    # test directory
    testdir = os.path.join(get_test_dir(), dir_name)
    mkdir(testdir, reset=reset)

    # Init
    cfg.initialize()
    cfg.PATHS['working_dir'] = testdir
    cfg.PARAMS['use_intersects'] = False
    cfg.PATHS['dem_file'] = get_demo_file('dem_Columbia.tif')
    cfg.PARAMS['border'] = 10

    entity = gpd.read_file(get_demo_file('01_rgi60_Columbia.shp')).iloc[0]
    gdir = oggm.GlacierDirectory(entity)
    if gdir.has_file('climate_historical'):
        return gdir

    gis.define_glacier_region(gdir)
    gis.simple_glacier_masks(gdir)
    centerlines.elevation_band_flowline(gdir)
    centerlines.fixed_dx_elevation_band_flowline(gdir)
    centerlines.compute_downstream_line(gdir)
    tasks.process_dummy_cru_file(gdir, seed=0)
    return gdir
Пример #14
0
    def test_mu_candidates(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        se = gdir.read_pickle('mu_candidates')
        self.assertTrue(se.index[0] == 1802)
        self.assertTrue(se.index[-1] == 2003)

        df = pd.DataFrame()
        df['mu'] = se

        # Check that the moovin average of temp is negatively correlated
        # with the mus
        with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r:
            ref_t = nc_r.variables['temp'][:, 1, 1]
        ref_t = np.mean(ref_t.reshape((len(df), 12)), 1)
        ma = np.convolve(ref_t, np.ones(31) / float(31), 'same')
        df['temp'] = ma
        df = df.dropna()
        self.assertTrue(np.corrcoef(df['mu'], df['temp'])[0, 1] < -0.75)
Пример #15
0
    def test_distribute_climate_cru(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gdirs.append(gdir)
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir_cru)
        gis.define_glacier_region(gdir, entity=entity)
        gdirs.append(gdir)

        climate.distribute_climate_data([gdirs[0]])
        cru_dir = get_demo_file('cru_ts3.23.1901.2014.tmp.dat.nc')
        cru_dir = os.path.dirname(cru_dir)
        cfg.PATHS['climate_file'] = '~'
        cfg.PATHS['cru_dir'] = cru_dir
        climate.distribute_climate_data([gdirs[1]])
        cfg.PATHS['cru_dir'] = '~'
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')

        gdh = gdirs[0]
        gdc = gdirs[1]
        with xr.open_dataset(os.path.join(gdh.dir, 'climate_monthly.nc')) as nc_h:
            with xr.open_dataset(os.path.join(gdc.dir, 'climate_monthly.nc')) as nc_c:
                # put on the same altitude
                # (using default gradient because better)
                temp_cor = nc_c.temp -0.0065 * (nc_h.ref_hgt - nc_c.ref_hgt)
                totest = temp_cor - nc_h.temp
                self.assertTrue(totest.mean() < 0.5)
                # precip
                totest = nc_c.prcp - nc_h.prcp
                self.assertTrue(totest.mean() < 100)
Пример #16
0
    def test_distribute_climate(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        gdirs = []
        for index, entity in rgidf.iterrows():
            gdir = cfg.GlacierDir(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity)
            gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)

        nc_r = netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc'))
        ref_h = nc_r.variables['hgt'][1, 1]
        ref_p = nc_r.variables['prcp'][:, 1, 1]
        ref_p *= cfg.params['prcp_scaling_factor']
        ref_t = nc_r.variables['temp'][:, 1, 1]
        nc_r.close()

        nc_r = netCDF4.Dataset(os.path.join(gdir.dir, 'climate_monthly.nc'))
        self.assertTrue(ref_h == nc_r.ref_hgt)
        np.testing.assert_allclose(ref_t, nc_r.variables['temp'][:])
        np.testing.assert_allclose(ref_p, nc_r.variables['prcp'][:])
        nc_r.close()
Пример #17
0
def test_nodivide():

    # test directory
    testdir = TESTDIR_BASE + '_nodiv'
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    # loop because for some reason indexing wont work
    hef_file = get_demo_file('Hintereisferner.shp')
    rgidf = gpd.GeoDataFrame.from_file(hef_file)
    for index, entity in rgidf.iterrows():
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)

    graphics.plot_centerlines(gdir)
Пример #18
0
    def setUp(self):
        """Instance the TestCase, create the test directory,
        OGGM initialisation and setting paths and parameters.
        """

        # test directory
        self.testdir = os.path.join(get_test_dir(), 'tmp_vas')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # load default parametere file and set working directory
        cfg.initialize()
        cfg.PATHS['working_dir'] = self.testdir
        # set path to GIS files
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        # set parameters for climate file and mass balance calibration
        cfg.PARAMS['baseline_climate'] = 'CUSTOM'
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['run_mb_calibration'] = True
        # adjust parameters for HistAlp climate
        cfg.PARAMS['prcp_scaling_factor'] = 1.75
        cfg.PARAMS['temp_melt'] = -1.75
        cfg.PARAMS['temp_all_liq'] = 2.
        cfg.PARAMS['temp_all_solid'] = 0.
        cfg.PARAMS['temp_default_gradient'] = -0.0065

        # coveralls.io has issues if multiprocessing is enabled
        cfg.PARAMS['use_multiprocessing'] = False
Пример #19
0
def test_nodivide():

    # test directory
    testdir = TESTDIR_BASE + '_nodiv'
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    # loop because for some reason indexing wont work
    hef_file = get_demo_file('Hintereisferner.shp')
    rgidf = gpd.GeoDataFrame.from_file(hef_file)
    for index, entity in rgidf.iterrows():
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)

    graphics.plot_centerlines(gdir)
Пример #20
0
def test_ice_cap():

    testdir = os.path.join(get_test_dir(), 'tmp_icecap')
    utils.mkdir(testdir, reset=True)

    cfg.initialize()
    cfg.PARAMS['use_intersects'] = False
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-05.08389.tif')
    cfg.PARAMS['border'] = 60
    cfg.PATHS['working_dir'] = testdir

    df = gpd.read_file(get_demo_file('divides_RGI50-05.08389.shp'))
    df['Area'] = df.Area * 1e-6  # cause it was in m2
    df['RGIId'] = ['RGI50-05.08389_d{:02d}'.format(d + 1) for d in df.index]

    gdirs = workflow.init_glacier_regions(df)
    workflow.gis_prepro_tasks(gdirs)

    from salem import mercator_grid, Map
    smap = mercator_grid((gdirs[0].cenlon, gdirs[0].cenlat),
                         extent=[20000, 23000])
    smap = Map(smap)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdirs,
                                  ax=ax,
                                  add_intersects=True,
                                  add_touches=True,
                                  smap=smap)
    fig.tight_layout()
    shutil.rmtree(testdir)
    return fig
Пример #21
0
    def test_mb_climate(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)

        with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r:
            ref_h = nc_r.variables['hgt'][1, 1]
            ref_p = nc_r.variables['prcp'][:, 1, 1]
            ref_p *= cfg.PARAMS['prcp_scaling_factor']
            ref_t = nc_r.variables['temp'][:, 1, 1]
            ref_t = np.where(ref_t < 0, 0, ref_t)

        hgts = np.array([ref_h, ref_h, -8000, 8000])
        time, temp, prcp = climate.mb_climate_on_height(gdir, hgts)

        ref_nt = 202*12
        self.assertTrue(len(time) == ref_nt)
        self.assertTrue(temp.shape == (4, ref_nt))
        self.assertTrue(prcp.shape == (4, ref_nt))
        np.testing.assert_allclose(temp[0, :], ref_t)
        np.testing.assert_allclose(temp[0, :], temp[1, :])
        np.testing.assert_allclose(prcp[0, :], prcp[1, :])
        np.testing.assert_allclose(prcp[3, :], ref_p)
        np.testing.assert_allclose(prcp[2, :], ref_p*0)
        np.testing.assert_allclose(temp[3, :], ref_p*0)

        yr = [1802, 1802]
        time, temp, prcp = climate.mb_climate_on_height(gdir, hgts,
                                                        year_range=yr)
        ref_nt = 1*12
        self.assertTrue(len(time) == ref_nt)
        self.assertTrue(temp.shape == (4, ref_nt))
        self.assertTrue(prcp.shape == (4, ref_nt))
        np.testing.assert_allclose(temp[0, :], ref_t[0:12])
        np.testing.assert_allclose(temp[0, :], temp[1, :])
        np.testing.assert_allclose(prcp[0, :], prcp[1, :])
        np.testing.assert_allclose(prcp[3, :], ref_p[0:12])
        np.testing.assert_allclose(prcp[2, :], ref_p[0:12]*0)
        np.testing.assert_allclose(temp[3, :], ref_p[0:12]*0)

        yr = [1803, 1804]
        time, temp, prcp = climate.mb_climate_on_height(gdir, hgts,
                                                        year_range=yr)
        ref_nt = 2*12
        self.assertTrue(len(time) == ref_nt)
        self.assertTrue(temp.shape == (4, ref_nt))
        self.assertTrue(prcp.shape == (4, ref_nt))
        np.testing.assert_allclose(temp[0, :], ref_t[12:36])
        np.testing.assert_allclose(temp[0, :], temp[1, :])
        np.testing.assert_allclose(prcp[0, :], prcp[1, :])
        np.testing.assert_allclose(prcp[3, :], ref_p[12:36])
        np.testing.assert_allclose(prcp[2, :], ref_p[12:36]*0)
        np.testing.assert_allclose(temp[3, :], ref_p[12:36]*0)
Пример #22
0
    def cfg_init(self):

        # Init
        cfg.initialize()
        cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['baseline_climate'] = 'CUSTOM'
Пример #23
0
    def test_all_at_once(self, class_case_dir):

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['working_dir'] = class_case_dir
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')

        hef_file = get_demo_file('Hintereisferner_RGI5.shp')

        gdir = workflow.init_glacier_directories(gpd.read_file(hef_file))[0]

        exps = ['CRU', 'HISTALP', 'ERA5', 'ERA5L', 'CERA']
        files = []
        ref_hgts = []
        for base in exps:
            cfg.PARAMS['baseline_climate'] = base
            tasks.process_climate_data(gdir, output_filesuffix=base)
            files.append(
                gdir.get_filepath('climate_historical', filesuffix=base))
            with xr.open_dataset(files[-1]) as ds:
                ref_hgts.append(ds.ref_hgt)
                assert ds.ref_pix_dis < 30000
        # TEMP
        with xr.open_mfdataset(files, concat_dim=exps) as ds:
            dft = ds.temp.to_dataframe().unstack().T
            dft.index = dft.index.levels[1]

        # Common period
        dfy = dft.resample('AS').mean().dropna().iloc[1:]
        dfm = dft.groupby(dft.index.month).mean()
        assert dfy.corr().min().min() > 0.44  # ERA5L and CERA do no correlate
        assert dfm.corr().min().min() > 0.97
        dfavg = dfy.describe()

        # Correct for hgt
        ref_h = ref_hgts[0]
        for h, d in zip(ref_hgts, exps):
            dfy[d] = dfy[d] - 0.0065 * (ref_h - h)
            dfm[d] = dfm[d] - 0.0065 * (ref_h - h)
        dfavg_cor = dfy.describe()

        # After correction less spread
        assert dfavg_cor.loc['mean'].std() < 0.8 * dfavg.loc['mean'].std()
        assert dfavg_cor.loc['mean'].std() < 2.1

        # PRECIP
        with xr.open_mfdataset(files, concat_dim=exps) as ds:
            dft = ds.prcp.to_dataframe().unstack().T
            dft.index = dft.index.levels[1]

        # Common period
        dfy = dft.resample('AS').mean().dropna().iloc[1:] * 12
        dfm = dft.groupby(dft.index.month).mean()
        assert dfy.corr().min().min() > 0.5
        assert dfm.corr().min().min() > 0.8
        dfavg = dfy.describe()
        assert dfavg.loc['mean'].std() / dfavg.loc['mean'].mean() < 0.25  # %
Пример #24
0
def test_coxe():

    testdir = os.path.join(get_test_dir(), 'tmp_coxe')
    utils.mkdir(testdir, reset=True)

    # Init
    cfg.initialize()
    cfg.PARAMS['use_intersects'] = False
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['clip_tidewater_border'] = False
    cfg.PARAMS['use_multiple_flowlines'] = False
    cfg.PARAMS['use_kcalving_for_inversion'] = True
    cfg.PARAMS['use_kcalving_for_run'] = True
    cfg.PARAMS['trapezoid_lambdas'] = 1

    hef_file = get_demo_file('rgi_RGI50-01.10299.shp')
    entity = gpd.read_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.initialize_flowlines(gdir)
    centerlines.compute_downstream_line(gdir)
    centerlines.compute_downstream_bedshape(gdir)
    centerlines.catchment_area(gdir)
    centerlines.catchment_intersections(gdir)
    centerlines.catchment_width_geom(gdir)
    centerlines.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.mass_conservation_inversion(gdir)
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')

    p = gdir.read_pickle('linear_mb_params')
    mb_mod = massbalance.LinearMassBalance(ela_h=p['ela_h'], grad=p['grad'])
    mb_mod.temp_bias = -0.3
    model = flowline.FluxBasedModel(fls,
                                    mb_model=mb_mod,
                                    y0=0,
                                    inplace=True,
                                    is_tidewater=True)

    # run
    model.run_until(200)
    assert model.calving_m3_since_y0 > 0

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    shutil.rmtree(testdir)
    return fig
Пример #25
0
    def test_local_t_star(self):

        # set parameters for climate file and mass balance calibration
        cfg.PARAMS['baseline_climate'] = 'CUSTOM'
        cfg.PARAMS['baseline_y0'] = 1850
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['run_mb_calibration'] = False

        # read the Hintereisferner
        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and the glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        # run centerline prepro tasks
        centerlines.compute_centerlines(gdir)
        centerlines.initialize_flowlines(gdir)
        centerlines.catchment_area(gdir)
        centerlines.catchment_intersections(gdir)
        centerlines.catchment_width_geom(gdir)
        centerlines.catchment_width_correction(gdir)
        # process the given climate file
        climate.process_custom_climate_data(gdir)

        # compute the reference t* for the glacier
        # given the reference of mass balance measurements
        res = vascaling.t_star_from_refmb(gdir)
        t_star, bias = res['t_star'], res['bias']
        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, tstar=t_star, bias=bias)
        # read calibration results
        vas_mustar_refmb = gdir.read_json('vascaling_mustar')

        # get reference t* list
        ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp']
        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, ref_df=ref_df)
        # read calibration results
        vas_mustar_refdf = gdir.read_json('vascaling_mustar')

        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir)
        # read calibration results
        vas_mustar = gdir.read_json('vascaling_mustar')

        # compare with each other
        assert vas_mustar_refdf == vas_mustar
        # TODO: this test is failing currently
        # np.testing.assert_allclose(vas_mustar_refmb['bias'],
        #                            vas_mustar_refdf['bias'], atol=1)
        vas_mustar_refdf.pop('bias')
        vas_mustar_refmb.pop('bias')
        # end of workaround
        assert vas_mustar_refdf == vas_mustar_refmb
Пример #26
0
    def test_distribute(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13
        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = cfg.FS * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v) ** 2

        import scipy.optimize as optimization

        out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-1)["x"]
        glen_a = cfg.A * out[0]
        fs = cfg.FS * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
        np.testing.assert_allclose(ref_v, v)

        inversion.distribute_thickness(gdir, how="per_altitude", add_nc_name=True)
        inversion.distribute_thickness(gdir, how="per_interpolation", add_slope=False, add_nc_name=True)

        grids_file = gdir.get_filepath("gridded_data")
        with netCDF4.Dataset(grids_file) as nc:
            t1 = nc.variables["thickness_per_altitude"][:]
            t2 = nc.variables["thickness_per_interpolation"][:]

        np.testing.assert_allclose(np.sum(t1), np.sum(t2))
        if not HAS_NEW_GDAL:
            np.testing.assert_allclose(np.max(t1), np.max(t2), atol=30)
Пример #27
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_divides_db(get_demo_file('HEF_divided.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
Пример #28
0
def up_to_climate(reset=False):
    """Run the tasks you want."""

    # test directory
    if not os.path.exists(TEST_DIR):
        os.makedirs(TEST_DIR)
    if reset:
        clean_dir(TEST_DIR)

    if not os.path.exists(CLI_LOGF):
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('none', f)

    # Init
    cfg.initialize()

    # Use multiprocessing
    # We don't use mp on TRAVIS because unsure if compatible with test coverage
    cfg.PARAMS['use_multiprocessing'] = not ON_TRAVIS

    # Working dir
    cfg.PATHS['working_dir'] = TEST_DIR

    cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif')

    # Read in the RGI file
    rgi_file = get_demo_file('rgi_oetztal.shp')
    rgidf = gpd.GeoDataFrame.from_file(rgi_file)

    # Be sure data is downloaded because lock doesn't work
    cl = utils.get_cru_cl_file()

    # Params
    cfg.PARAMS['border'] = 70
    cfg.PARAMS['use_optimized_inversion_params'] = True
    cfg.PARAMS['tstar_search_window'] = [1902, 0]
    cfg.PARAMS['invert_with_rectangular'] = False

    # Go
    gdirs = workflow.init_glacier_regions(rgidf)

    assert gdirs[14].name == 'Hintereisferner'

    try:
        tasks.catchment_width_correction(gdirs[0])
    except Exception:
        reset = True

    if reset:
        # First preprocessing tasks
        workflow.gis_prepro_tasks(gdirs)

    return gdirs
Пример #29
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_divides_db(get_demo_file('HEF_divided.shp'))
        cfg.paths['srtm_file'] = get_demo_file('hef_srtm.tif')
Пример #30
0
def test_coxe():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_coxe')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['use_multiple_flowlines'] = False

    hef_file = get_demo_file('rgi_RGI50-01.10299.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A, 'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')

    p = gdir.read_pickle('linear_mb_params')
    mb_mod = massbalance.LinearMassBalanceModel(ela_h=p['ela_h'],
                                                grad=p['grad'])
    mb_mod.temp_bias = -0.3
    model = flowline.FluxBasedModel(fls,
                                    mb_model=mb_mod,
                                    y0=0,
                                    is_tidewater=True)

    # run
    model.run_until(200)
    assert model.calving_m3_since_y0 > 0

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
Пример #31
0
def up_to_climate(reset=False):
    """Run the tasks you want."""

    # test directory
    if not os.path.exists(TEST_DIR):
        os.makedirs(TEST_DIR)
    if reset:
        clean_dir(TEST_DIR)

    if not os.path.exists(CLI_LOGF):
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('none', f)

    # Init
    cfg.initialize()

    # Use multiprocessing
    cfg.PARAMS['use_multiprocessing'] = use_multiprocessing()

    # Working dir
    cfg.PATHS['working_dir'] = TEST_DIR

    cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif')

    # Read in the RGI file
    rgi_file = get_demo_file('rgi_oetztal.shp')
    rgidf = gpd.read_file(rgi_file)

    # Be sure data is downloaded
    cl = utils.get_cru_cl_file()

    # Params
    cfg.PARAMS['border'] = 70
    cfg.PARAMS['optimize_inversion_params'] = True
    cfg.PARAMS['use_optimized_inversion_params'] = True
    cfg.PARAMS['tstar_search_window'] = [1902, 0]
    cfg.PARAMS['invert_with_rectangular'] = False
    cfg.PARAMS['run_mb_calibration'] = True

    # Go
    gdirs = workflow.init_glacier_regions(rgidf)

    try:
        tasks.catchment_width_correction(gdirs[0])
    except Exception:
        reset = True

    if reset:
        # First preprocessing tasks
        workflow.gis_prepro_tasks(gdirs)

    return gdirs
Пример #32
0
def test_coxe():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_coxe')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['use_multiple_flowlines'] = False

    hef_file = get_demo_file('rgi_RGI50-01.10299.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A,
                                                     'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')

    p = gdir.read_pickle('linear_mb_params')
    mb_mod = massbalance.LinearMassBalanceModel(ela_h=p['ela_h'],
                                                grad=p['grad'])
    mb_mod.temp_bias = -0.3
    model = flowline.FluxBasedModel(fls, mb_model=mb_mod, y0=0,
                                    is_tidewater=True)

    # run
    model.run_until(200)
    assert model.calving_m3_since_y0 > 0

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
Пример #33
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_divides_db(get_demo_file('divides_workflow.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        cfg.PARAMS['border'] = 10
Пример #34
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, "tmp")
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.PATHS["dem_file"] = get_demo_file("hef_srtm.tif")
        cfg.PATHS["climate_file"] = get_demo_file("histalp_merged_hef.nc")
        cfg.PARAMS["border"] = 10
Пример #35
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(get_test_dir(), 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        cfg.PATHS['working_dir'] = self.testdir
Пример #36
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_divides_db(get_demo_file('divides_workflow.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['border'] = 10
Пример #37
0
def up_to_climate(reset=False):
    """Run the tasks you want."""

    # test directory
    if not os.path.exists(TEST_DIR):
        os.makedirs(TEST_DIR)
    if reset:
        clean_dir(TEST_DIR)

    if not os.path.exists(CLI_LOGF):
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('none', f)

    # Init
    cfg.initialize()

    # Use multiprocessing
    cfg.PARAMS['use_multiprocessing'] = use_multiprocessing()

    # Working dir
    cfg.PATHS['working_dir'] = TEST_DIR
    cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif')
    cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp'))

    # Read in the RGI file
    rgi_file = get_demo_file('rgi_oetztal.shp')
    rgidf = gpd.read_file(rgi_file)

    # Be sure data is downloaded
    utils.get_cru_cl_file()

    # Params
    cfg.PARAMS['border'] = 70
    cfg.PARAMS['tstar_search_window'] = [1902, 0]
    cfg.PARAMS['run_mb_calibration'] = True

    # Go
    gdirs = workflow.init_glacier_regions(rgidf)

    try:
        tasks.catchment_width_correction(gdirs[0])
    except Exception:
        reset = True

    if reset:
        # First preprocessing tasks
        workflow.gis_prepro_tasks(gdirs)

    return gdirs
Пример #38
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(get_test_dir(), 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        self.rgi_file = get_demo_file('rgi_RGI50-01.10299.shp')

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
        cfg.PARAMS['border'] = 40
Пример #39
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(get_test_dir(), 'tmp')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        self.rgi_file = get_demo_file('rgi_RGI50-01.10299.shp')

        # Init
        cfg.initialize()
        cfg.PARAMS['use_intersects'] = False
        cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
        cfg.PARAMS['border'] = 40
Пример #40
0
def test_chhota_shigri():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_chhota')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_chhota_shigri.tif')
    cfg.PARAMS['border'] = 60
    cfg.set_divides_db(get_demo_file('divides_RGI50-14.15990.shp'))

    hef_file = get_demo_file('RGI50-14.15990.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have two groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group)) == 2

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A,
                                                     'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')
    for fl in fls:
        fl.thick = np.clip(fl.thick, 100, 1000)
    model = flowline.FlowlineModel(fls)

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
Пример #41
0
    def test_catchment_area(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = cfg.GlacierDir(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.catchment_area(gdir)

        for div_id in gdir.divide_ids:

            cis = gdir.read_pickle('catchment_indices', div_id=div_id)

            # The catchment area must be as big as expected
            nc = netCDF4.Dataset(gdir.get_filepath('grids', div_id=div_id))
            mask = nc.variables['glacier_mask'][:]
            nc.close()

            mymask_a = mask * 0
            mymask_b = mask * 0
            for i, ci in enumerate(cis):
                mymask_a[tuple(ci.T)] += 1
                mymask_b[tuple(ci.T)] = i+1
            self.assertTrue(np.max(mymask_a) == 1)
            np.testing.assert_allclose(mask, mymask_a)
Пример #42
0
    def test_flowlines(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle("inversion_flowlines", div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points, cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [len(gdir.read_pickle("centerlines", div_id=i)) for i in [1, 2, 3]]
        self.assertTrue(sorted(lens) == [1, 1, 2])

        x, y = map(np.array, cls[0].line.xy)
        dis = np.sqrt((x[1:] - x[:-1]) ** 2 + (y[1:] - y[:-1]) ** 2)
        np.testing.assert_allclose(dis * 0 + cfg.PARAMS["flowline_dx"], dis, rtol=0.01)
Пример #43
0
    def test_catchment_area(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.catchment_area(gdir)

        for div_id in gdir.divide_ids:

            cis = gdir.read_pickle("catchment_indices", div_id=div_id)

            # The catchment area must be as big as expected
            with netCDF4.Dataset(gdir.get_filepath("gridded_data", div_id=div_id)) as nc:
                mask = nc.variables["glacier_mask"][:]

            mymask_a = mask * 0
            mymask_b = mask * 0
            for i, ci in enumerate(cis):
                mymask_a[tuple(ci.T)] += 1
                mymask_b[tuple(ci.T)] = i + 1
            self.assertTrue(np.max(mymask_a) == 1)
            np.testing.assert_allclose(mask, mymask_a)
Пример #44
0
    def test_run_constant_climate(self):
        """ Test the run_constant_climate task for a climate based on the
        equilibrium period centred around t*. Additionally a positive and a
        negative temperature bias are tested.

        """
        # let's not use the mass balance bias since we want to reproduce
        # results from mass balance calibration
        cfg.PARAMS['use_bias_for_run'] = False

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)
        # compute mass balance parameters
        ref_df = cfg.PARAMS['vas_ref_tstars_rgi5_histalp']
        vascaling.local_t_star(gdir, ref_df=ref_df)

        # define some parameters for the constant climate model
        nyears = 500
        temp_bias = 0.5
        _ = vascaling.run_constant_climate(gdir, nyears=nyears,
                                           output_filesuffix='')
        _ = vascaling.run_constant_climate(gdir, nyears=nyears,
                                           temperature_bias=+temp_bias,
                                           output_filesuffix='_bias_p')
        _ = vascaling.run_constant_climate(gdir, nyears=nyears,
                                           temperature_bias=-temp_bias,
                                           output_filesuffix='_bias_n')

        # compile run outputs
        ds = utils.compile_run_output([gdir], input_filesuffix='')
        ds_p = utils.compile_run_output([gdir], input_filesuffix='_bias_p')
        ds_n = utils.compile_run_output([gdir], input_filesuffix='_bias_n')

        # the glacier should not change under a constant climate
        # based on the equilibirum period centered around t*
        assert abs(1 - ds.volume.mean() / ds.volume[0]) < 1e-7
        # higher temperatures should result in a smaller glacier
        assert ds.volume.mean() > ds_p.volume.mean()
        # lower temperatures should result in a larger glacier
        assert ds.volume.mean() < ds_n.volume.mean()

        # compute volume change from one year to the next
        dV_p = (ds_p.volume[1:].values - ds_p.volume[:-1].values).flatten()
        dV_n = (ds_n.volume[1:].values - ds_n.volume[:-1].values).flatten()
        # compute relative volume change, with respect to the final volume
        rate_p = abs(dV_p / float(ds_p.volume.values[-1]))
        rate_n = abs(dV_n / float(ds_n.volume.values[-1]))
        # the glacier should be in a new equilibirum for last 300 years
        assert max(rate_p[-300:]) < 0.001
        assert max(rate_n[-300:]) < 0.001
Пример #45
0
    def test_flowlines(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = cfg.GlacierDir(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle('inversion_flowlines', div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points, cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [len(gdir.read_pickle('centerlines', div_id=i)) for i in [1,2,3]]
        self.assertTrue(sorted(lens) == [1, 1, 3])

        x, y = map(np.array, cls[0].line.xy)
        dis = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)
        np.testing.assert_allclose(dis*0 + cfg.params['flowline_dx'], dis,
                                   rtol=0.01)
Пример #46
0
def up_to_inversion(reset=False):
    """Run the tasks you want."""

    gdirs = up_to_climate(reset=reset)

    with open(CLI_LOGF, 'rb') as f:
        clilog = pickle.load(f)

    if clilog != 'histalp':
        reset = True
    else:
        try:
            tasks.prepare_for_inversion(gdirs[0])
        except Exception:
            reset = True

    if reset:
        # Use histalp for the actual inversion test
        cfg.PARAMS['temp_use_local_gradient'] = True
        cfg.PARAMS['baseline_climate'] = 'HISTALP'
        cru_dir = get_demo_file('HISTALP_precipitation_all_abs_1801-2014.nc')
        cfg.PATHS['cru_dir'] = os.path.dirname(cru_dir)
        workflow.climate_tasks(gdirs)
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('histalp', f)

        # Inversion
        workflow.inversion_tasks(gdirs)

    return gdirs
Пример #47
0
def test_plot_region_model():

    gdirs = random_for_plot()

    dfc = utils.compile_task_log(gdirs, task_names=['run_random_climate_plot'])
    assert np.all(dfc['run_random_climate_plot'] == 'SUCCESS')

    # We prepare for the plot, which needs our own map to proceed.
    # Lets do a local mercator grid
    g = salem.mercator_grid(center_ll=(10.86, 46.85), extent=(27000, 21000))
    # And a map accordingly
    sm = salem.Map(g, countries=False)
    sm.set_topography(get_demo_file('srtm_oetztal.tif'))

    # Give this to the plot function
    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdirs,
                                  smap=sm,
                                  ax=ax,
                                  filesuffix='_plot',
                                  vmax=250,
                                  modelyr=10,
                                  linewidth=1.5)

    fig.tight_layout()
    return fig
Пример #48
0
    def test_download(self):

        f = utils.get_demo_file('Hintereisferner.shp')
        self.assertTrue(os.path.exists(f))

        sh = salem.utils.read_shapefile(f)
        self.assertTrue(hasattr(sh, 'geometry'))
Пример #49
0
    def test_flowlines(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle('inversion_flowlines', div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points,
                                     cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(
                        ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(
                        cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        self.assertTrue(sorted(lens) == [1, 1, 3])

        x, y = map(np.array, cls[0].line.xy)
        dis = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)
        np.testing.assert_allclose(dis * 0 + cfg.PARAMS['flowline_dx'],
                                   dis,
                                   rtol=0.01)
Пример #50
0
def up_to_distrib(reset=False):
    # for cross val basically

    gdirs = up_to_climate(reset=reset)

    with open(CLI_LOGF, 'rb') as f:
        clilog = pickle.load(f)

    if clilog != 'cru':
        reset = True
    else:
        try:
            tasks.compute_ref_t_stars(gdirs)
        except Exception:
            reset = True

    if reset:
        # Use CRU
        cfg.PARAMS['prcp_scaling_factor'] = 2.5
        cfg.PARAMS['temp_use_local_gradient'] = False
        cfg.PARAMS['baseline_climate'] = 'CRU'
        cru_dir = get_demo_file('cru_ts3.23.1901.2014.tmp.dat.nc')
        cfg.PATHS['cru_dir'] = os.path.dirname(cru_dir)
        with warnings.catch_warnings():
            # There is a warning from salem
            warnings.simplefilter("ignore")
            workflow.execute_entity_task(tasks.process_cru_data, gdirs)
        tasks.compute_ref_t_stars(gdirs)
        workflow.execute_entity_task(tasks.local_t_star, gdirs)
        workflow.execute_entity_task(tasks.mu_star_calibration, gdirs)
        with open(CLI_LOGF, 'wb') as f:
            pickle.dump('cru', f)

    return gdirs
Пример #51
0
    def test_catchment_area(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.catchment_area(gdir)

        for div_id in gdir.divide_ids:

            cis = gdir.read_pickle('catchment_indices', div_id=div_id)

            # The catchment area must be as big as expected
            nc = netCDF4.Dataset(
                gdir.get_filepath('gridded_data', div_id=div_id))
            mask = nc.variables['glacier_mask'][:]
            nc.close()

            mymask_a = mask * 0
            mymask_b = mask * 0
            for i, ci in enumerate(cis):
                mymask_a[tuple(ci.T)] += 1
                mymask_b[tuple(ci.T)] = i + 1
            self.assertTrue(np.max(mymask_a) == 1)
            np.testing.assert_allclose(mask, mymask_a)
Пример #52
0
    def test_centerlines(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle('centerlines', div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points,
                                     cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(
                        ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(
                        cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        self.assertTrue(sorted(lens) == [1, 1, 3])
Пример #53
0
    def setup_cache(self):

        utils.mkdir(self.testdir, reset=True)
        self.cfg_init()

        hef_file = get_demo_file('Hintereisferner_RGI5.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)

        tasks.define_glacier_region(gdir, entity=entity)
        tasks.glacier_masks(gdir)
        tasks.compute_centerlines(gdir)
        tasks.initialize_flowlines(gdir)
        tasks.compute_downstream_line(gdir)
        tasks.compute_downstream_bedshape(gdir)
        tasks.catchment_area(gdir)
        tasks.catchment_intersections(gdir)
        tasks.catchment_width_geom(gdir)
        tasks.catchment_width_correction(gdir)
        tasks.process_custom_climate_data(gdir)
        tasks.mu_candidates(gdir)
        mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE']
        res = climate.t_star_from_refmb(gdir, mbdf)
        tasks.local_mustar(gdir, tstar=res['t_star'], bias=res['bias'])
        tasks.apparent_mb(gdir)

        tasks.prepare_for_inversion(gdir)
        tasks.mass_conservation_inversion(gdir)

        return gdir
Пример #54
0
 def clean_dir(self):
     self.rm_dir()
     tfile = get_demo_file("dem.tif")
     gpath = os.path.dirname(tfile)
     self.rgin = os.path.basename(gpath)
     gpath = os.path.dirname(gpath)
     assert self.rgin == "RGI50-11.01270"
     shutil.copytree(gpath, self.testdir)
Пример #55
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, 'tmp_prepro')
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.testdir_cru = os.path.join(current_dir, 'tmp_prepro_cru')
        if not os.path.exists(self.testdir_cru):
            os.makedirs(self.testdir_cru)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.set_divides_db(get_demo_file('HEF_divided.shp'))
        cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['border'] = 10
Пример #56
0
    def test_glacierdir(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)

        # this should simply run
        mygdir = oggm.GlacierDirectory(entity.RGIID, base_dir=self.testdir)
Пример #57
0
    def test_define_region(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)

        tdf = gpd.GeoDataFrame.from_file(gdir.get_filepath("outlines"))
        myarea = tdf.geometry.area * 10 ** -6
        np.testing.assert_allclose(myarea, np.float(tdf["AREA"]), rtol=1e-2)
Пример #58
0
    def test_downstream(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        centerlines.compute_downstream_lines(gdir)
Пример #59
0
    def test_present_time_glacier_massbalance(self):

        gdir = init_hef(border=DOM_BORDER)
        flowline.init_present_time_glacier(gdir)

        mb_mod = massbalance.HistalpMassBalanceModel(gdir)

        fls = gdir.read_pickle('model_flowlines')
        glacier = flowline.FlowlineModel(fls)

        hef_file = utils.get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')

        hgts = np.array([])
        widths = np.array([])
        for fl in glacier.fls:
            hgts = np.concatenate((hgts, fl.surface_h))
            widths = np.concatenate((widths, fl.widths_m))
        tot_mb = []
        refmb = []
        grads = hgts * 0
        for yr, mb in mbdf.iterrows():
            refmb.append(mb['ANNUAL_BALANCE'])
            mbh = mb_mod.get_mb(hgts, yr) * SEC_IN_YEAR * cfg.RHO
            grads += mbh
            tot_mb.append(np.average(mbh, weights=widths))
        grads /= len(tot_mb)

        # Bias
        self.assertTrue(np.abs(utils.md(tot_mb, refmb)) < 50)

        # Gradient
        dfg = pd.read_csv(utils.get_demo_file('mbgrads_RGI40-11.00897.csv'),
                          index_col='ALTITUDE').mean(axis=1)

        # Take the altitudes below 3100 and fit a line
        dfg = dfg[dfg.index < 3100]
        pok = np.where(hgts < 3100)
        from scipy.stats import linregress
        slope_obs, _, _, _, _ = linregress(dfg.index, dfg.values)
        slope_our, _, _, _, _ = linregress(hgts[pok], grads[pok])
        np.testing.assert_allclose(slope_obs, slope_our, rtol=0.1)
Пример #60
0
    def setUp(self):

        # test directory
        self.testdir = os.path.join(current_dir, "tmp")
        if not os.path.exists(self.testdir):
            os.makedirs(self.testdir)
        self.clean_dir()

        # Init
        cfg.initialize()
        cfg.PATHS["dem_file"] = get_demo_file("hef_srtm.tif")