def test_monthly_specific_mb(self): """Test the monthly specific mass balance against the corresponding yearly mass balance. """ # run all needed prepro tasks gdir = self._setup_mb_test() # instance mb models vas_mbmod = vascaling.VAScalingMassBalance(gdir) # get relevant glacier surface elevation min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) # get all month of that year in the # floating (hydrological) year convention year = 1803 months = np.linspace(year, year + 1, num=12, endpoint=False) # compute monthly specific mass balance for # all month of given year and store in array spec_mb_month = np.empty(months.size) for i, month in enumerate(months): spec_mb_month[i] = vas_mbmod.get_monthly_specific_mb( min_hgt, max_hgt, month) # compute yearly specific mass balance spec_mb_year = vas_mbmod.get_specific_mb(min_hgt, max_hgt, year) # compare np.testing.assert_allclose(spec_mb_month.sum(), spec_mb_year, rtol=1e-3)
def _set_up_VAS_model(self): """Avoiding a chunk of code duplicate. Set's up a running volume/area scaling model, including all needed prepo tasks. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI6.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # run center line preprocessing tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # read reference glacier mass balance data mbdf = gdir.get_ref_mb_data() # compute the reference t* for the glacier # given the reference of mass balance measurements res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE']) t_star, bias = res['t_star'], res['bias'] # -------------------- # MASS BALANCE TASKS # -------------------- # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # instance the mass balance models mbmod = vascaling.VAScalingMassBalance(gdir) # ---------------- # DYNAMICAL PART # ---------------- # get reference area a0 = gdir.rgi_area_m2 # get reference year y0 = gdir.get_climate_info()['baseline_hydro_yr_0'] # get min and max glacier surface elevation h0, h1 = vascaling.get_min_max_elevation(gdir) model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0, min_hgt=h0, max_hgt=h1, mb_model=mbmod) return gdir, model
def test_annual_mb(self): """Test the routine computing the annual mass balance.""" # run all needed prepro tasks gdir = self._setup_mb_test() # get relevant glacier surface elevation min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) # define temporal range year = 1975 years = np.array([year, year]) # get mass balance relevant climate data _, temp, prcp = vascaling.get_yearly_mb_temp_prcp(gdir, year_range=years) temp = temp[0] prcp = prcp[0] # read mu* and bias from vascaling_mustar vascaling_mustar = gdir.read_json('vascaling_mustar') mu_star = vascaling_mustar['mu_star'] bias = vascaling_mustar['bias'] # specify scaling factor for SI units [kg s-1] fac_SI = cfg.SEC_IN_YEAR * cfg.PARAMS['ice_density'] # compute mass balance 'by hand' mb_ref = (prcp - mu_star * temp - bias) / fac_SI # compute mb using the VAS mass balance model mb_mod = vascaling.VAScalingMassBalance(gdir).get_annual_mb( min_hgt, max_hgt, year) # compare mass balances with bias np.testing.assert_allclose(mb_ref, mb_mod, rtol=1e-3) # compute mass balance 'by hand' mb_ref = (prcp - mu_star * temp) / fac_SI # compute mb 'by model' mb_mod = vascaling.VAScalingMassBalance(gdir, bias=0). \ get_annual_mb(min_hgt, max_hgt, year) # compare mass balances without bias np.testing.assert_allclose(mb_ref, mb_mod, rtol=1e-3)
def test_specific_mb(self): """Compare the specific mass balance to the one computed using the OGGM function of the PastMassBalance model. """ # run all needed prepro tasks gdir = self._setup_mb_test() # instance mb models vas_mbmod = vascaling.VAScalingMassBalance(gdir) past_mbmod = massbalance.PastMassBalance(gdir) # get relevant glacier surface elevation min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) # define temporal range ys = 1802 ye = 2003 years = np.arange(ys, ye + 1) # get flow lines fls = gdir.read_pickle('inversion_flowlines') # create empty container past_mb = np.empty(years.size) vas_mb = np.empty(years.size) # get specific mass balance for all years for i, year in enumerate(years): past_mb[i] = past_mbmod.get_specific_mb(fls=fls, year=year) vas_mb[i] = vas_mbmod.get_specific_mb(min_hgt, max_hgt, year) # compute and check correlation assert corrcoef(past_mb, vas_mb) >= 0.94 # relative error of average spec mb assert np.abs(rel_err(past_mb.mean(), vas_mb.mean())) <= 0.38 # check correlation of positive and negative mb years assert corrcoef(np.sign(past_mb), np.sign(vas_mb)) >= 0.72 # compare to reference mb measurements mbs = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] assert corrcoef(vas_mb[np.in1d(years, mbs.index)], mbs) >= 0.79
def test_annual_climate(self): """Test my routine against the corresponding OGGM routine from the `PastMassBalance()` model. """ # run all needed prepro tasks gdir = self._setup_mb_test() # instance the mass balance models vas_mbmod = vascaling.VAScalingMassBalance(gdir) past_mbmod = massbalance.PastMassBalance(gdir) # get relevant glacier surface elevation min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) heights = np.array([min_hgt, (min_hgt + max_hgt) / 2, max_hgt]) # specify an (arbitray) year year = 1975 # get mass balance relevant climate information temp_for_melt_vas, prcp_solid_vas = \ vas_mbmod.get_annual_climate(min_hgt, max_hgt, year) _, temp_for_melt_oggm, _, prcp_solid_oggm = \ past_mbmod.get_annual_climate(heights, year) # prepare my (monthly) values for comparison temp_for_melt_vas = temp_for_melt_vas.sum() prcp_solid_vas = prcp_solid_vas.sum() # computed positive terminus melting temperature must be equal for both # used methods, i.e. temp_VAS == temp_OGGM np.testing.assert_allclose(temp_for_melt_vas, temp_for_melt_oggm[0], rtol=1e-3) # glacier averaged solid precipitation amount must be greater than (or # equal to) solid precipitation amount at glacier terminus elevation assert md(prcp_solid_oggm[0], prcp_solid_vas) >= 0 # glacier averaged solid precipitation amount must be comparable to the # solid precipitation amount at average glacier surface elevation assert rel_err(prcp_solid_oggm[1], prcp_solid_vas) <= 0.15 # glacier averaged solid precipitation amount must be less than (or # equal to) solid precipitation amount at maximum glacier elevation assert md(prcp_solid_oggm[2], prcp_solid_vas) <= 0
def test_monthly_climate(self): """Test the routine getting the monthly climate against the routine getting annual climate. """ # run all needed prepro tasks gdir = self._setup_mb_test() # instance the mass balance models mbmod = vascaling.VAScalingMassBalance(gdir) # get relevant glacier surface elevation min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) # get all month of the year in the # floating (hydrological) year convention year = 1975 months = np.linspace(year, year + 1, num=12, endpoint=False) # create containers temp_month = np.empty(12) prcp_month = np.empty(12) # get mb relevant climate data for every month for i, month in enumerate(months): _temp, _prcp = mbmod.get_monthly_climate(min_hgt, max_hgt, month) temp_month[i] = _temp prcp_month[i] = _prcp # melting temperature and precipitation amount cannot be negative assert temp_month.all() >= 0. assert prcp_month.all() >= 0. # get climate data for the whole year temp_year, prcp_year = mbmod.get_annual_climate(min_hgt, max_hgt, year) # compare np.testing.assert_array_almost_equal(temp_month, temp_year, decimal=2) np.testing.assert_array_almost_equal(prcp_month, prcp_year, decimal=2)
def seek_start_area(rgi_id, name, show=False, path='', ref=np.NaN, adjust_term_elev=False, legend=True, instant_geometry_change=False): """ Set up an VAS model from scratch and run/test the start area seeking tasks. The result is a plot showing the modeled glacier area evolution for different start values. The plots can be displayed and/or stored to file. Parameters ---------- rgi_id: string RGI ID denoting the glacier on which to perform the tasks name: string Name og glacier, since it is not always given (or correct) in RGI show: bool, optional, default=False Flag deciding whether or not to show the created plots. path: string, optional, default='' Path under which the modeled area plot should be stored. ref: float, optional, default=np.NaN Historic (1851) reference area with which a reference model run is performed. """ # Initialization and load default parameter file vascaling.initialize() # compute RGI region and version from RGI IDs # assuming they all are all the same rgi_region = (rgi_id.split('-')[-1]).split('.')[0] rgi_version = (rgi_id.split('-')[0])[-2:-1] # specify working directory and output directory working_dir = os.path.abspath('../working_directories/start_area/') # output_dir = os.path.abspath('./vas_run_output') output_dir = os.path.abspath('../data/vas_run_output') # create working directory utils.mkdir(working_dir, reset=False) utils.mkdir(output_dir) # set path to working directory cfg.PATHS['working_dir'] = working_dir # set RGI version and region cfg.PARAMS['rgi_version'] = rgi_version # define how many grid points to use around the glacier, # if you expect the glacier to grow large use a larger border cfg.PARAMS['border'] = 20 # we use HistAlp climate data cfg.PARAMS['baseline_climate'] = 'HISTALP' # set the mb hyper parameters accordingly cfg.PARAMS['prcp_scaling_factor'] = 1.75 cfg.PARAMS['temp_melt'] = -1.75 cfg.PARAMS['run_mb_calibration'] = False # the bias is defined to be zero during the calibration process, # which is why we don't use it here to reproduce the results cfg.PARAMS['use_bias_for_run'] = True # get/downlaod the rgi entity including the outline shapefile rgi_df = utils.get_rgi_glacier_entities([rgi_id]) # set name, if not delivered with RGI if rgi_df.loc[int(rgi_id[-5:]) - 1, 'Name'] is None: rgi_df.loc[int(rgi_id[-5:]) - 1, 'Name'] = name # get and set path to intersect shapefile intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region) cfg.set_intersects_db(intersects_db) # initialize the GlacierDirectory gdir = workflow.init_glacier_directories(rgi_df)[0] # # DEM and GIS tasks # # get the path to the DEM file (will download if necessary) # dem = utils.get_topo_file(gdir.cenlon, gdir.cenlat) # print('DEM source: {}, path to DEM file: {}'.format(dem[1], dem[0][0])) # # set path in config file # cfg.PATHS['dem_file'] = dem[0][0] # cfg.PARAMS['border'] = 10 # cfg.PARAMS['use_intersects'] = False # run GIS tasks gis.define_glacier_region(gdir) gis.glacier_masks(gdir) # process climate data climate.process_climate_data(gdir) # compute local t* and the corresponding mu* vascaling.local_t_star(gdir) # create mass balance model mb_mod = vascaling.VAScalingMassBalance(gdir) # look at specific mass balance over climate data period min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir) y0 = 1851 y1 = 2014 # run scalar minimization minimize_res = vascaling.find_start_area( gdir, adjust_term_elev=adjust_term_elev, instant_geometry_change=instant_geometry_change) # print(minimize_res) # stop script if minimization was not successful if minimize_res.status and False: sys.exit(minimize_res.status) # instance glacier with today's values model_ref = vascaling.VAScalingModel(year_0=gdir.rgi_date, area_m2_0=gdir.rgi_area_m2, min_hgt=min_hgt, max_hgt=max_hgt, mb_model=mb_mod) # instance guessed starting areas num = 9 area_guess = np.linspace(1e6, np.floor(gdir.rgi_area_m2 * 2), num, endpoint=True) # create empty containers area_list = list() volume_list = list() spec_mb_list = list() # iterate over all starting areas for area_ in area_guess: # instance iteration model model_guess = vascaling.VAScalingModel(year_0=gdir.rgi_date, area_m2_0=gdir.rgi_area_m2, min_hgt=min_hgt, max_hgt=max_hgt, mb_model=mb_mod) # set new starting values model_guess.create_start_glacier(area_, y0, adjust_term_elev=adjust_term_elev) # run model and save years and area best_guess_ds = model_guess.run_until_and_store( year_end=model_ref.year, instant_geometry_change=instant_geometry_change) # create series and store in container area_list.append(best_guess_ds.area_m2.to_dataframe()['area_m2']) volume_list.append(best_guess_ds.volume_m3.to_dataframe()['volume_m3']) spec_mb_list.append(best_guess_ds.spec_mb.to_dataframe()['spec_mb']) # create DataFrame area_df = pd.DataFrame( area_list, index=['{:.2f}'.format(a / 1e6) for a in area_guess]) area_df.index.name = 'Start Area [km$^2$]' volume_df = pd.DataFrame( volume_list, index=['{:.2f}'.format(a / 1e6) for a in area_guess]) volume_df.index.name = 'Start Area [km$^2$]' # set up model with resulted starting area model = vascaling.VAScalingModel(year_0=model_ref.year_0, area_m2_0=model_ref.area_m2_0, min_hgt=model_ref.min_hgt_0, max_hgt=model_ref.max_hgt, mb_model=model_ref.mb_model) model.create_start_glacier(minimize_res.x, y0, adjust_term_elev=adjust_term_elev) # run model with best guess initial area best_guess_ds = model.run_until_and_store( year_end=model_ref.year, instant_geometry_change=instant_geometry_change) # run model with historic reference area if ref: model.reset() model.create_start_glacier(ref * 1e6, y0, adjust_term_elev=adjust_term_elev) ref_ds = model.run_until_and_store( year_end=model_ref.year, instant_geometry_change=instant_geometry_change) # create figure and add axes fig = plt.figure(figsize=[5, 5]) ax = fig.add_axes([0.125, 0.075, 0.85, 0.9]) # plot model output ax = (area_df / 1e6).T.plot(legend=False, colormap='Spectral', ax=ax) # plot best guess ax.plot( best_guess_ds.time, best_guess_ds.area_m2 / 1e6, color='k', ls='--', lw=1.2, label= f'{best_guess_ds.area_m2.isel(time=0).values/1e6:.2f} km$^2$ (best result)' ) # plot reference if ref: ax.plot( ref_ds.time, ref_ds.area_m2 / 1e6, color='k', ls='-.', lw=1.2, label= f'{ref_ds.area_m2.isel(time=0).values/1e6:.2f} km$^2$ (1850 ref.)') # plot 2003 reference line ax.axhline( model_ref.area_m2_0 / 1e6, c='k', ls=':', label=f'{model_ref.area_m2_0/1e6:.2f} km$^2$ ({gdir.rgi_date} obs.)') # add legend if legend: handels, labels = ax.get_legend_handles_labels() labels[:-3] = [r'{} km$^2$'.format(l) for l in labels[:-3]] leg = ax.legend(handels, labels, loc='upper right', ncol=2) # leg.set_title('Start area $A_0$', prop={'size': 12}) # replot best guess estimate and reference (in case it lies below another # guess) ax.plot(best_guess_ds.time, best_guess_ds.area_m2 / 1e6, color='k', ls='--', lw=1.2) if ref: ax.plot(ref_ds.time, ref_ds.area_m2 / 1e6, color='k', ls='-.', lw=1.2) # labels, title ax.set_xlim([best_guess_ds.time.values[0], best_guess_ds.time.values[-1]]) ax.set_xlabel('') ax.set_ylabel('Glacier area [km$^2$]') # save figure to file if path: fig.savefig(path) # show plot if show: plt.show() plt.clf() # plot and store volume evolution (volume_df / 1e9).T.plot(legend=False, colormap='viridis') plt.gcf().savefig(path[:-4] + '_volume.pdf')
def test_run_until_and_store(self): """Test the volume/area scaling model against the oggm.FluxBasedModel. Both models run the Hintereisferner over the entire HistAlp climate period, initialized with the 2003 RGI outline without spin up. The following two parameters for length, area and volume are tested: - correlation coefficient - relative RMSE, i.e. RMSE/mean(OGGM). Whereby the results from the VAS model are offset with the average differences to the OGGM results. """ # read the Hintereisferner DEM hef_file = get_demo_file('Hintereisferner_RGI6.shp') entity = gpd.read_file(hef_file).iloc[0] # initialize the GlacierDirectory gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir) # define the local grid and glacier mask gis.define_glacier_region(gdir, entity=entity) gis.glacier_masks(gdir) # process the given climate file climate.process_custom_climate_data(gdir) # run center line preprocessing tasks centerlines.compute_centerlines(gdir) centerlines.initialize_flowlines(gdir) centerlines.compute_downstream_line(gdir) centerlines.compute_downstream_bedshape(gdir) centerlines.catchment_area(gdir) centerlines.catchment_intersections(gdir) centerlines.catchment_width_geom(gdir) centerlines.catchment_width_correction(gdir) # read reference glacier mass balance data mbdf = gdir.get_ref_mb_data() # compute the reference t* for the glacier # given the reference of mass balance measurements res = climate.t_star_from_refmb(gdir, mbdf=mbdf['ANNUAL_BALANCE']) t_star, bias = res['t_star'], res['bias'] # -------------------- # SCALING MODEL # -------------------- # compute local t* and the corresponding mu* vascaling.local_t_star(gdir, tstar=t_star, bias=bias) # instance the mass balance models vas_mbmod = vascaling.VAScalingMassBalance(gdir) # get reference area a0 = gdir.rgi_area_m2 # get reference year y0 = gdir.get_climate_info()['baseline_hydro_yr_0'] # get min and max glacier surface elevation h0, h1 = vascaling.get_min_max_elevation(gdir) vas_model = vascaling.VAScalingModel(year_0=y0, area_m2_0=a0, min_hgt=h0, max_hgt=h1, mb_model=vas_mbmod) # let model run over entire HistAlp climate period vas_ds = vas_model.run_until_and_store(2003) # ------ # OGGM # ------ # compute local t* and the corresponding mu* climate.local_t_star(gdir, tstar=t_star, bias=bias) climate.mu_star_calibration(gdir) # instance the mass balance models mb_mod = massbalance.PastMassBalance(gdir) # perform ice thickness inversion inversion.prepare_for_inversion(gdir) inversion.mass_conservation_inversion(gdir) inversion.filter_inversion_output(gdir) # initialize present time glacier flowline.init_present_time_glacier(gdir) # instance flowline model fls = gdir.read_pickle('model_flowlines') y0 = gdir.get_climate_info()['baseline_hydro_yr_0'] fl_mod = flowline.FluxBasedModel(flowlines=fls, mb_model=mb_mod, y0=y0) # run model and store output as xarray data set _, oggm_ds = fl_mod.run_until_and_store(2003) # temporal indices must be equal assert (vas_ds.time == oggm_ds.time).all() # specify which parameters to compare and their respective correlation # coefficients and rmsd values params = ['length_m', 'area_m2', 'volume_m3'] corr_coeffs = np.array([0.7, 0.7, 0.7]) rmsds = np.array([0.43e3, 0.25e6, 0.05e9]) # compare given parameters for param, cc, rmsd in zip(params, corr_coeffs, rmsds): # correlation coefficient assert corrcoef(oggm_ds[param].values, vas_ds[param].values) >= cc # root mean squared deviation rmsd_an = rmsd_bc(oggm_ds[param].values, vas_ds[param].values) assert rmsd_an <= rmsd
# process the given climate file workflow.execute_entity_task(climate.process_climate_data, gdirs) # compute local t* and the corresponding mu* workflow.execute_entity_task(vascaling.local_t_star, gdirs) # -------------------- # SCALING MODEL # -------------------- # compute local t* and the corresponding mu* log.info('Initialize the model') gdir = gdirs[0] # instance the mass balance models mb_mod = vascaling.VAScalingMassBalance(gdir) # get reference area a0 = gdir.rgi_area_m2 # get reference year y0 = int(rgidf.BgnDate.values[0][:4]) # get min and max glacier surface elevation h0, h1 = vascaling.get_min_max_elevation(gdir) # set up the glacier model with the values of 2003 hef_ref = vascaling.VAScalingModel(year_0=1851, area_m2_0=a0, min_hgt=h0, max_hgt=h1, mb_model=mb_mod)