Пример #1
0
def test_D_G_path(baseline_spending, Y, TR, Revenue, Gbaseline, budget_balance,
                  expected_tuple):
    p = Specifications()
    new_param_values = {
        'T': 320,
        'S': 80,
        'debt_ratio_ss': 1.2,
        'tG1': 20,
        'tG2': 256,
        'alpha_T': [0.09],
        'alpha_G': [0.05],
        'rho_G': 0.1,
        'g_y_annual': 0.03,
        'baseline_spending': baseline_spending,
        'budget_balance': budget_balance
    }
    p.update_specifications(new_param_values, raise_errors=False)
    r_gov = np.ones(p.T + p.S) * 0.03
    p.g_n = np.ones(p.T + p.S) * 0.02
    D0_baseline = 0.59
    Gbaseline[0] = 0.05
    dg_fixed_values = (Y, Revenue, TR, Gbaseline, D0_baseline)
    test_tuple = fiscal.D_G_path(r_gov, dg_fixed_values, p)
    for i, v in enumerate(test_tuple):
        assert np.allclose(v[:p.T], expected_tuple[i][:p.T])
Пример #2
0
def test_D_G_path(baseline_spending, Y, T_H, REVENUE, Gbaseline,
                  D_expected, G_expected):
    p = Specifications()
    new_param_values = {
        'T': 320,
        'S': 80,
        'debt_ratio_ss': 1.2,
        'tG1': 20,
        'tG2': 256,
        'alpha_T': [0.09],
        'alpha_G': [0.05],
        'rho_G': 0.1,
        'g_y_annual': 0.03,
        'budget_balance': False,
        'baseline_spending': baseline_spending
    }
    p.update_specifications(new_param_values, raise_errors=False)
    r_gov = np.ones(p.T + p.S) * 0.03
    p.g_n = np.ones(p.T + p.S) * 0.02
    D0 = 0.59
    G0 = 0.05
    dg_fixed_values = (Y, REVENUE, T_H, D0, G0)
    test_D, test_G = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline,
                                     p)
    assert np.allclose(test_D, D_expected)
    assert np.allclose(test_G, G_expected)
Пример #3
0
def run_TPI(p, client=None):
    '''
    Solve for transition path equilibrium of OG-USA.

    Args:
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with transition path solution
            results

    '''
    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\
        initial_values
    (TRbaseline, Gbaseline, D0_baseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    guesses_b = utils.get_initial_path(initial_b, ss_vars['bssmat_splus1'], p,
                                       'ratio')
    guesses_n = utils.get_initial_path(initial_n, ss_vars['nssmat'], p,
                                       'ratio')
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    # Get path for aggregate savings and labor supply`
    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0
    K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']
    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
    r[p.T:] = ss_vars['rss']
    # For case where economy is small open econ
    r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
    # Compute other interest rates
    r_gov = fiscal.get_r_gov(r, p)
    r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])

    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']

    # initial guesses at fiscal vars
    if p.budget_balance:
        if np.abs(ss_vars['TR_ss']) < 1e-13:
            TR_ss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the
            # approximation error, which affects the pct changes below
        else:
            TR_ss2 = ss_vars['TR_ss']
        TR = np.ones(p.T + p.S) * TR_ss2
        total_tax_revenue = TR - ss_vars['agg_pension_outlays']
        G = np.zeros(p.T + p.S)
        D = np.zeros(p.T + p.S)
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        if p.baseline_spending:
            TR = TRbaseline
            G = Gbaseline
            G[p.T:] = ss_vars['Gss']
        else:
            TR = p.alpha_T * Y
            G = np.ones(p.T + p.S) * ss_vars['Gss']
        D = np.ones(p.T + p.S) * ss_vars['Dss']
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_tax_revenue = np.ones(p.T + p.S) * ss_vars['total_tax_revenue']

    # Initialize bequests
    BQ0 = aggr.get_BQ(r_hh[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if not p.budget_balance:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')

        r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])

        outer_loop_vars = (r, w, r_hh, BQ, TR, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        if client:
            futures = client.compute(lazy_values, num_workers=p.num_workers)
            results = client.gather(futures)
        else:
            results = results = compute(*lazy_values,
                                        scheduler=dask.multiprocessing.get,
                                        num_workers=p.num_workers)

        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        trmat = household.get_tr(TR, None, p, 'TPI')
        tax_mat = tax.net_taxes(r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                                bqmat[:p.T, :, :], factor, trmat[:p.T, :, :],
                                theta, 0, None, False, 'TPI', p.e,
                                etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh)
        wpath = utils.to_timepath_shape(w)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = household.get_y(r_hh_path[:p.T, :, :],
                                           wpath[:p.T, :, :],
                                           bmat_s[:p.T, :, :],
                                           n_mat[:p.T, :, :], p)

        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh[:p.T], w[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat[:p.T, :, :],
                                     c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        dg_fixed_values = (Y, total_tax_revenue, agg_pension_outlays, TR,
                           Gbaseline, D0_baseline)
        (Dnew, G[:p.T], D_d[:p.T], D_f[:p.T], new_borrowing,
         debt_service, new_borrowing_f) =\
            fiscal.D_G_path(r_gov, dg_fixed_values, p)
        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.world_int_rate[:p.T], p, 'TPI')
        K[:p.T], K_d[:p.T], K_f[:p.T] = aggr.get_K_splits(
            B[:p.T], K_demand_open, D_d[:p.T], p.zeta_K[:p.T])
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        # For case where economy is small open econ
        r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1]
        r_gov_new = fiscal.get_r_gov(rnew, p)
        r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                 Dnew[:p.T])
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays,
         bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue,
         business_tax_revenue, payroll_tax_revenue,
         iit_revenue) = aggr.revenue(r_hh_new[:p.T], wnew[:p.T], bmat_s,
                                     n_mat[:p.T, :, :], bqmat_new[:p.T, :, :],
                                     c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
                                     K[:p.T], factor, theta, etr_params_4D, p,
                                     'TPI')
        total_tax_revenue[:p.T] = total_tax_rev
        TR_new = fiscal.get_TR(Ynew[:p.T], TR[:p.T], G[:p.T],
                               total_tax_revenue[:p.T],
                               agg_pension_outlays[:p.T], p, 'TPI')

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(),
              (TR_new[:p.T] - TR[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if TR.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(TR[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # foreign debt service costs
    debt_service_f = fiscal.get_debt_service_f(r_hh, D_f)
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)
    # Compute total investment (not just domestic)
    I_total = aggr.get_I(None, K[1:p.T + 1], K[:p.T], p, 'total_tpi')

    # Compute resource constraint error
    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_tax_revenue': total_tax_revenue,
        'business_tax_revenue': business_tax_revenue,
        'iit_payroll_tax_revenue': iit_payroll_tax_revenue,
        'iit_revenue': iit_revenue,
        'payroll_tax_revenue': payroll_tax_revenue,
        'TR': TR,
        'agg_pension_outlays': agg_pension_outlays,
        'bequest_tax_revenue': bequest_tax_revenue,
        'wealth_tax_revenue': wealth_tax_revenue,
        'cons_tax_revenue': cons_tax_revenue,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tr_path': trmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    with open(tpi_vars, "wb") as f:
        pickle.dump(output, f)

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Пример #4
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, SS_values, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (Kss, Bss, Lss, rss, wss, BQss, T_Hss, total_revenue_ss, bssmat_splus1,
     nssmat, Yss, Gss, theta) = SS_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = bssmat_splus1
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (nssmat - initial_n) + initial_n
    ending_n_tail = np.tile(nssmat.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b  # np.zeros((p.T + p.S, p.S, p.J))
    n_mat = guesses_n  # np.zeros((p.T + p.S, p.S, p.J))
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * Lss
    B_init = np.ones((p.T + p.S, )) * Bss
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * Kss / Bss
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = Yss
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = rss
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = wss
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, p.debt_ratio_ss * Y)
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:,
               j] = (list(np.linspace(BQ0[j], BQss[j], p.T)) + [BQss[j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, BQss, p.T)) + [BQss] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(T_Hss) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = T_Hss
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting value
    if p.budget_balance:
        D = 0.0 * Y
    else:
        D = p.debt_ratio_ss * Y
    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    print('analytical mtrs in tpi = ', p.analytical_mtrs)
    print('tax function type in tpi = ', p.tax_func_type)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)

        if not p.small_open:
            if p.budget_balance:
                K[:p.T] = B[:p.T]
            else:
                if not p.baseline_spending:
                    Y = T_H / p.alpha_T  # maybe unecessary

                    (total_rev, T_Ipath, T_Ppath, T_BQpath, T_Wpath,
                     T_Cpath, business_revenue) = aggr.revenue(
                         r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                         bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T],
                         L[:p.T], K[:p.T], factor, theta, etr_params_4D, p,
                         'TPI')
                    total_revenue = np.array(
                        list(total_rev) + [total_revenue_ss] * p.S)

                # set intial debt value
                if p.baseline:
                    D_0 = p.initial_debt_ratio * Y[0]
                else:
                    D_0 = D0
                if not p.baseline_spending:
                    G_0 = p.alpha_G[0] * Y[0]
                dg_fixed_values = (Y, total_revenue, T_H, D_0, G_0)
                Dnew, G = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline, p)

                K[:p.T] = B[:p.T] - Dnew[:p.T]
                if np.any(K < 0):
                    print('K has negative elements. Setting them ' +
                          'positive to prevent NAN.')
                    K[:p.T] = np.fmax(K[:p.T], 0.05 * B[:p.T])
        else:
            K[:p.T] = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        if not p.small_open:
            rnew = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew = r.copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew, r_gov_new, K[:p.T], Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue = np.array(list(total_rev) + [total_revenue_ss] * p.S)

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        if p.small_open and not p.budget_balance:
            # Loop through years to calculate debt and gov't spending.
            # This is done earlier when small_open=False.
            if p.baseline:
                D_0 = p.initial_debt_ratio * Y[0]
            else:
                D_0 = D0
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Ynew[0]
            dg_fixed_values = (Ynew, total_revenue, T_H, D_0, G_0)
            Dnew, G = fiscal.D_G_path(r_gov_new, dg_fixed_values, Gbaseline, p)

        if p.budget_balance:
            Dnew = D

        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D = Dnew
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)

        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(wnew[:p.T], w[:p.T])) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')

    if not p.small_open:
        I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
        rc_error = Y[:p.T] - C[:p.T] - I[:p.T] - G[:p.T]
    else:
        I = ((1 + np.squeeze(np.hstack(
            (p.g_n[1:p.T], p.g_n_ss)))) * np.exp(p.g_y) * K[1:p.T + 1] -
             (1.0 - p.delta) * K[:p.T])
        BI = aggr.get_I(bmat_splus1[:p.T], B[1:p.T + 1], B[:p.T], p, 'TPI')
        new_borrowing = (D[1:p.T] * (1 + p.g_n[1:p.T]) * np.exp(p.g_y) -
                         D[:p.T - 1])
        rc_error = (Y[:p.T - 1] + new_borrowing -
                    (C[:p.T - 1] + BI[:p.T - 1] + G[:p.T - 1]) +
                    (p.hh_r[:p.T - 1] * B[:p.T - 1] -
                     (p.delta + p.firm_r[:p.T - 1]) * K[:p.T - 1] -
                     p.hh_r[:p.T - 1] * D[:p.T - 1]))

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(rc_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': rc_error,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(rc_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(rc_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Пример #5
0
def run_TPI(p, client=None):

    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (T_Hbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = ss_vars['bssmat_splus1']
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (ss_vars['nssmat'] - initial_n) + initial_n
    ending_n_tail = np.tile(ss_vars['nssmat'].reshape(1, p.S, p.J),
                            (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_K(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    else:
        K_init = firm.get_K(L_init, p.firm_r, p, 'TPI')

    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = ss_vars['rss']
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(ss_vars['T_Hss']) < 1e-13:
            T_Hss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            T_Hss2 = ss_vars['T_Hss']
        T_H = np.ones(p.T + p.S) * T_Hss2
        total_revenue = T_H
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        T_H = p.alpha_T * Y
        G = np.ones(p.T + p.S) * ss_vars['Gss']
    elif p.baseline_spending:
        T_H = T_Hbaseline
        T_H_new = p.T_H  # Need to set T_H_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting values
    if p.budget_balance:
        D = np.zeros(p.T + p.S)
    else:
        D = np.ones(p.T + p.S) * ss_vars['Dss']
    if ss_vars['Dss'] == 0:
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_revenue = np.ones(p.T + p.S) * ss_vars['total_revenue_ss']

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, T_H, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  T_H[:p.T], theta, 0, None, False, 'TPI', p.e,
                                  etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = (r_hh_path[:p.T, :, :] * bmat_s[:p.T, :, :] +
                            wpath[:p.T, :, :] * p.e * n_mat[:p.T, :, :])

        if not p.baseline_spending and not p.budget_balance:
            Y[:p.T] = T_H[:p.T] / p.alpha_T[:p.T]  # maybe unecessary

            (total_rev, T_Ipath, T_Ppath, T_BQpath,
             T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
                 r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                 bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                 K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
            total_revenue[:p.T] = total_rev
            # set intial debt value
            if p.baseline:
                D0 = p.initial_debt_ratio * Y[0]
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Y[0]
            dg_fixed_values = (Y, total_revenue, T_H, D0, G_0)
            Dnew, G[:p.T] = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline,
                                            p)
            # Fix initial amount of foreign debt holding
            D_f[0] = p.initial_foreign_debt_ratio * Dnew[0]
            for t in range(1, p.T):
                D_f[t + 1] = (D_f[t] / (np.exp(p.g_y) * (1 + p.g_n[t + 1])) +
                              p.zeta_D[t] * (Dnew[t + 1] -
                                             (Dnew[t] / (np.exp(p.g_y) *
                                                         (1 + p.g_n[t + 1])))))
            D_d[:p.T] = Dnew[:p.T] - D_f[:p.T]
        else:  # if budget balance
            Dnew = np.zeros(p.T + 1)
            G[:p.T] = np.zeros(p.T)
            D_f[:p.T] = np.zeros(p.T)
            D_d[:p.T] = np.zeros(p.T)

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_K(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        K_d[:p.T] = B[:p.T] - D_d[:p.T]
        if np.any(K_d < 0):
            print('K_d has negative elements. Setting them ' +
                  'positive to prevent NAN.')
            K_d[:p.T] = np.fmax(K_d[:p.T], 0.05 * B[:p.T])
        K_f[:p.T] = p.zeta_K[:p.T] * (K_demand_open - B[:p.T] + D_d[:p.T])
        K = K_f + K_d
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])
        if p.small_open:
            K[:p.T] = K_demand_open
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        if not p.small_open:
            rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew[:p.T] = r[:p.T].copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue[:p.T] = total_rev

        if p.budget_balance:
            T_H_new = total_revenue
        elif not p.baseline_spending:
            T_H_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update T_H, it's fixed

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            T_H[:p.T] = utils.convex_combo(T_H_new[:p.T], T_H[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('T_H diff: ', (T_H_new[:p.T] - T_H[:p.T]).max(),
              (T_H_new[:p.T] - T_H[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if T_H.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(T_H_new[:p.T], T_H[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(T_H[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # net foreign borrowing
    new_borrowing_f = (D_f[1:p.T + 1] * np.exp(p.g_y) *
                       (1 + p.g_n[1:p.T + 1]) - D_f[:p.T])
    debt_service_f = D_f * r_hh
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'T_H': T_H,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output