Пример #1
0
def ETR_income(r, w, b, n, factor, e, etr_params, p):
    '''
    Calculates effective personal income tax rate.

    Args:
        r (array_like): real interest rate
        w (array_like): real wage rate
        b (Numpy array): savings
        n (Numpy array): labor supply
        factor (scalar): scaling factor converting model units to
            dollars
        e (Numpy array): effective labor units
        etr_params (Numpy array): effective tax rate function parameters
        p (OG-USA Specifications object): model parameters

    Returns:
        tau (Numpy array): effective tax rate on total income

    '''
    X = (w * e * n) * factor
    Y = (r * b) * factor

    tau = get_tax_rates(etr_params,
                        X,
                        Y,
                        None,
                        p.tax_func_type,
                        'etr',
                        for_estimation=False)

    return tau
Пример #2
0
def MTR_income(r, w, b, n, factor, mtr_capital, e, etr_params, mtr_params, p):
    r'''
    Generates the marginal tax rate on labor income for households.

    Args:
        r (array_like): real interest rate
        w (array_like): real wage rate
        b (Numpy array): savings
        n (Numpy array): labor supply
        factor (scalar): scaling factor converting model units to
            dollars
        mtr_capital (bool): whether to compute the marginal tax rate on
            capital income or labor income
        e (Numpy array): effective labor units
        etr_params (Numpy array): effective tax rate function parameters
        p (OG-USA Specifications object): model parameters

    Returns:
        tau (Numpy array): marginal tax rate on income source

    '''
    X = (w * e * n) * factor
    Y = (r * b) * factor

    if p.analytical_mtrs:
        tau = get_tax_rates(etr_params,
                            X,
                            Y,
                            None,
                            p.tax_func_type,
                            'mtr',
                            p.analytical_mtrs,
                            mtr_capital,
                            for_estimation=False)
    else:
        tau = get_tax_rates(mtr_params,
                            X,
                            Y,
                            None,
                            p.tax_func_type,
                            'mtr',
                            p.analytical_mtrs,
                            mtr_capital,
                            for_estimation=False)

    return tau
Пример #3
0
def test_get_tax_rates(tax_func_type, rate_type, params, for_estimation,
                       expected):
    '''
    Teset of txfunc.get_tax_rates() function.  There are 6 cases to
    test:
    1) DEP function, for estimation
    2) DEP function, not for estimation
    3) GS function, etr
    4) GS function, mtr
    5) DEP_totalinc function, for estimation
    6) DEP_totalinc function, not for estimation
    '''
    wgts = np.array([0.1, 0.25, 0.55, 0.1])
    X = np.array([32.0, 44.0, 1.6, 0.4])
    Y = np.array([32.0, 55.0, 0.9, 0.03])
    test_txrates = txfunc.get_tax_rates(params, X, Y, wgts, tax_func_type,
                                        rate_type, for_estimation)

    assert np.allclose(test_txrates, expected)
Пример #4
0
def test_get_tax_rates(tax_func_type, rate_type, params, for_estimation,
                       expected):
    '''
    Teset of txfunc.get_tax_rates() function.  There are 6 cases to
    test:
    1) DEP function, for estimation
    2) DEP function, not for estimation
    3) GS function, etr
    4) GS function, mtr
    5) DEP_totalinc function, for estimation
    6) DEP_totalinc function, not for estimation
    '''
    wgts = np.array([0.1, 0.25, 0.55, 0.1])
    X = np.array([32.0, 44.0, 1.6, 0.4])
    Y = np.array([32.0, 55.0, 0.9, 0.03])
    test_txrates = txfunc.get_tax_rates(params, X, Y, wgts,
                                        tax_func_type, rate_type,
                                        for_estimation)

    assert np.allclose(test_txrates, expected)