def __init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=None, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation. Hence, error by regimes has been disabled for this model.") regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y name_x = USER.set_name_x(name_x, x) regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._ols_regimes_multi(x, w, regi_ids, cores, gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran, white_test) else: name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__(self, y=y, x=x, robust=robust, gwk=gwk, sig2n_k=sig2n_k) if regime_err_sep == True and robust == None: y2, x2 = REGI._get_weighted_var( regimes, self.regimes_set, sig2n_k, self.u, y, x) ols2 = BaseOLS(y=y2, x=x2, sig2n_k=sig2n_k) RegressionProps_basic(self, betas=ols2.betas, vm=ols2.vm) self.title = "ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" nonspat_diag = None set_warn( self, "Residuals treated as homoskedastic for the purpose of diagnostics.") else: self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag, spat_diag=spat_diag, moran=moran, white_test=white_test, regimes=True)
def __init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation. Hence, error by regimes has been disabled for this model.") regime_err_sep = False self.regime_err_sep = regime_err_sep if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y name_x = USER.set_name_x(name_x, x) regi_ids = dict( (r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) self._ols_regimes_multi(x, w, regi_ids, cores, gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran, white_test) else: name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__( self, y=y, x=x, robust=robust, gwk=gwk, sig2n_k=sig2n_k) if regime_err_sep == True and robust == None: y2, x2 = REGI._get_weighted_var( regimes, self.regimes_set, sig2n_k, self.u, y, x) ols2 = BaseOLS(y=y2, x=x2, sig2n_k=sig2n_k) RegressionProps_basic(self, betas=ols2.betas, vm=ols2.vm) self.title = "ORDINARY LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" nonspat_diag = None set_warn( self, "Residuals treated as homoskedastic for the purpose of diagnostics.") else: self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag, spat_diag=spat_diag, moran=moran, white_test=white_test, regimes=True)
def __init__(self, y, x, regimes,\ w=None, robust=None, gwk=None, sig2n_k=True,\ nonspat_diag=True, spat_diag=False, moran=False,\ vm=False, constant_regi='many', cols2regi='all',\ regime_err_sep=False, cores=None,\ name_y=None, name_x=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) self.name_x_r = USER.set_name_x(name_x, x) self.constant_regi = constant_regi self.cols2regi = cols2regi self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_regimes = USER.set_name_ds(name_regimes) self.n = n if regime_err_sep == True: name_x = USER.set_name_x(name_x, x) self.y = y if cols2regi == 'all': cols2regi = [True] * (x.shape[1]) self.regimes_set = list(set(regimes)) self.regimes_set.sort() if w: w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(self.cols2regi)+1) set_warn(self,warn) else: regi_ids = dict((r, list(np.where(np.array(regimes) == r)[0])) for r in self.regimes_set) w_i = None if set(cols2regi) == set([True]): self._ols_regimes_multi(x, w_i, regi_ids, cores,\ gwk, sig2n_k, robust, nonspat_diag, spat_diag, vm, name_x, moran) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: name_x = USER.set_name_x(name_x, x,constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x,\ regimes, constant_regi, cols2regi, name_x) BaseOLS.__init__(self, y=y, x=x, robust=robust, gwk=gwk, \ sig2n_k=sig2n_k) self.title = "ORDINARY LEAST SQUARES - REGIMES" self.robust = USER.set_robust(robust) self.chow = REGI.Chow(self) SUMMARY.OLS(reg=self, vm=vm, w=w, nonspat_diag=nonspat_diag,\ spat_diag=spat_diag, moran=moran, regimes=True)
def _run_stp1(y,x,eq_ids,r): y_r = y[eq_ids[r]] x_r = x[eq_ids[r]] x_constant = USER.check_constant(x_r) model = BaseOLS(y_r, x_constant) #model.logll = diagnostics.log_likelihood(model) return model
def _work(y,x,regi_ids,r,robust,sig2n_k,name_ds,name_y,name_x,name_w,name_regimes): y_r = y[regi_ids[r]] x_r = x[regi_ids[r]] x_constant = USER.check_constant(x_r) if robust == 'hac': robust = None model = BaseOLS(y_r, x_constant, robust=robust, sig2n_k=sig2n_k) model.title = "ORDINARY LEAST SQUARES ESTIMATION - REGIME %s" %r model.robust = USER.set_robust(robust) model.name_ds = name_ds model.name_y = '%s_%s'%(str(r), name_y) model.name_x = ['%s_%s'%(str(r), i) for i in name_x] model.name_w = name_w model.name_regimes = name_regimes return model
def _run_stp1(y, x, yend, q, eq_ids, r, sig2n_k, w, w_lags, lag_q): y_r = y[eq_ids[r]] x_r = x[eq_ids[r]] yend_r = None if yend != None: yend_r = yend[eq_ids[r]] q_r = q[eq_ids[r]] if w_lags: yend_r, q_r = set_endog_sparse(y_r, x_r, w, yend_r, q_r, w_lags, lag_q) x_constant = USER.check_constant(x_r) if yend != None: model = BaseTSLS(y_r, x_constant, yend_r, q_r, sig2n_k=sig2n_k) model.zhat = np.dot(model.h, np.dot(model.hthi, model.htz)) else: model = BaseOLS(y_r, x_constant, sig2n_k=sig2n_k) model.zhat = model.x model.z = model.x return model