Пример #1
0
def get_mnist_parsed_args():
    args = parsing.parse_args()

    if not args.dataset in MNIST_DATASETS:
        raise Exception(
            NOT_MNIST_EXCEPTION.format(args.dataset, MNIST_DATASETS))

    args.image_transformers = parsing.parse_transformers(
        ['scale_2d', 'grayscale'])
    args.tensor_transformers = parsing.parse_transformers(['normalize_2d'])
    args.test_image_transformers = parsing.parse_transformers(
        ['scale_2d', 'grayscale'])
    args.test_tensor_transformers = parsing.parse_transformers(
        ['normalize_2d'])

    args.epochs = 1
    args.max_batches_per_epoch = 100
    args.num_classes = 10
    args.wrap_model = True
    args.num_images = 2

    return args
Пример #2
0
from onconet.learn import train
import onconet.transformers.factory as transformer_factory
import onconet.visualize as visualize
import onconet.utils.parsing as parsing
import warnings
import onconet.learn.state_keeper as state
from onconet.utils.get_dataset_stats import get_dataset_stats
import onconet.utils.stats as stats
import pdb
import csv

#Constants
DATE_FORMAT_STR = "%Y-%m-%d:%H-%M-%S"

if __name__ == '__main__':
    args = parsing.parse_args()
    if args.ignore_warnings:
        warnings.simplefilter('ignore')

    repo = git.Repo(search_parent_directories=True)
    commit  = repo.head.object
    args.commit = commit.hexsha
    print("OncoNet main running from commit: \n\n{}\n{}author: {}, date: {}".format(
        commit.hexsha, commit.message, commit.author, commit.committed_date))

    if args.get_dataset_stats:
        print("\nComputing image mean and std...")
        args.img_mean, args.img_std = get_dataset_stats(args)
        print('Mean: {}'.format(args.img_mean))
        print('Std: {}'.format(args.img_std))
Пример #3
0
            shuffle=False,
            num_workers=args.num_workers,
            drop_last=False,
            pin_memory=True,
            collate_fn=ignore_None_collate)


        for batch in tqdm(data_loader):
            img = batch['x']
            paths = batch['path']
            if args.cuda:
                img = img.cuda()

            B, C, H, W = img.size()

            left_half = img[:, :, :, :W//2].contiguous().view(B,-1)
            right_half = img[:, :, :, W//2:].contiguous().view(B,-1)

            is_right_aligned = right_half.sum(dim=-1) > left_half.sum(dim=-1)

            for indx, path in enumerate(paths):
                image_to_side[path] = bool(is_right_aligned[indx])

    return image_to_side

if __name__ == "__main__":

    args = parse_args()
    image_is_right_side = get_image_to_right_side(args)
    json.dump(image_is_right_side, open(IMAGE_RIGHT_ALIGNED_PATH,'w'))