Пример #1
0
def _test_input_format_f_contiguous_numpy(dtype):
    rng = np.random.RandomState(0)
    x_default = np.array(5 * rng.random_sample((10, 4)), dtype=dtype)

    x_numpy = np.asanyarray(x_default, dtype=dtype, order='F')
    assert not x_numpy.flags.c_contiguous
    assert x_numpy.flags.f_contiguous
    assert x_numpy.flags.fnc

    expected = linear_kernel(x_default)
    result = linear_kernel(x_numpy)
    assert_allclose(expected, result)
Пример #2
0
def _test_input_format_c_contiguous_pandas(dtype):
    pd = pytest.importorskip('pandas')
    rng = np.random.RandomState(0)
    x_default = np.array(5 * rng.random_sample((10, 4)), dtype=dtype)

    x_numpy = np.asanyarray(x_default, dtype=dtype, order='C')
    assert x_numpy.flags.c_contiguous
    assert not x_numpy.flags.f_contiguous
    assert not x_numpy.flags.fnc
    x_df = pd.DataFrame(x_numpy)

    expected = linear_kernel(x_df)
    result = linear_kernel(x_numpy)
    assert_allclose(expected, result)
def test_dense_self_linear_kernel():
    rng = np.random.RandomState(0)
    X = np.array(5 * rng.random_sample((10, 4)))

    result = linear_kernel(X)
    expected = np.dot(X, np.array(X).T)
    assert_allclose(result, expected, rtol=1e-15)
Пример #4
0
def _test_input_format_c_not_contiguous_numpy(dtype):
    rng = np.random.RandomState(0)
    x_default = np.array(5 * rng.random_sample((10, 4)), dtype=dtype)

    dummy_data = np.insert(x_default, range(1, x_default.shape[1]), 8, axis=1)
    x_numpy = dummy_data[:, ::2]

    assert_allclose(x_numpy, x_default)

    assert not x_numpy.flags.c_contiguous
    assert not x_numpy.flags.f_contiguous
    assert not x_numpy.flags.fnc

    expected = linear_kernel(x_default)
    result = linear_kernel(x_numpy)
    assert_allclose(expected, result)
def _test_dense_small_linear_kernel(scale, shift, dtype):
    rng = np.random.RandomState(0)
    X = np.array(5 * rng.random_sample((10, 4)), dtype=dtype)
    Y = np.array(5 * rng.random_sample((15, 4)), dtype=dtype)

    result = linear_kernel(X, Y, scale=scale, shift=shift)
    expected = np.dot(X, np.array(Y).T) * scale + shift
    tol = 1e-14 if dtype == np.float64 else 1e-6
    assert_allclose(result, expected, rtol=tol)