def all_op(input, dim=None, keepdim=False): """Computes if all elements in the input tensor to true. Args: input (oneflow.Tensor): the Input Tensor dim (int, optional): the dimension to reduce. Default: `None` keepdim (bool, optional): whether the output tensor has dim retained or not. Default: `False` Returns: Tensor(oneflow.Tensor(dtype=int8)): If :attr:`dim` is `None`, returns the logical all value of all elements in the `input` tensor. For example: .. code-block:: python >>> import oneflow as flow >>> input = flow.arange(0, 3) >>> flow.all(input) tensor(False, dtype=oneflow.bool) """ axis_checked = _check_axis(dim, input.shape) if len(axis_checked) == 0: return input return flow._C.reduce_all(input, axis=axis_checked, keepdims=keepdim)
def min_op(input, dim=None, keepdim=False): axis_checked = _check_axis(dim, input.shape) if len(axis_checked) == 0: return input if dim == None: return flow._C.reduce_min(input, axis=axis_checked, keepdims=keepdim) else: return ( flow._C.reduce_min(input, axis=axis_checked, keepdims=keepdim), input.argmin(dim=dim, keepdim=keepdim), )
def prod_op(input, dim=None, keepdim=False): axis_checked = _check_axis(dim, input.shape) if len(axis_checked) == 0: return input return flow._C.reduce_prod(input, axis_checked, keepdim)
def mean_op(input, dim=None, keepdim=False): axis_checked = _check_axis(dim, input.shape) if len(axis_checked) == 0: return input return flow._C.reduce_mean(input, axis=axis_checked, keepdims=keepdim)