Пример #1
0
class TestOnnxExporter(object):
    def test_export_constant_tensor_to_tensor_proto(self):
        name = "constant_tensor"
        shape = (3, 224, 224)
        values = np.random.random_sample(size=shape).astype(np.float32)

        tensor = Constant(name=name, values=values)
        onnx_tensor = OnnxExporter.export_tensor_proto(tensor)
        assert onnx_tensor.name == name
        assert np.all(onnx.numpy_helper.to_array(onnx_tensor) == values)
        assert onnx_tensor.data_type == onnx.TensorProto.FLOAT
        assert tuple(onnx_tensor.dims) == shape

    def test_export_constant_tensor_to_value_info_proto(self):
        name = "constant_tensor"
        shape = (3, 224, 224)
        values = np.random.random_sample(size=shape).astype(np.float32)

        tensor = Constant(name=name, values=values)
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert onnx_tensor.name == name
        assert onnx_tensor.type.tensor_type.elem_type == onnx.TensorProto.FLOAT

        onnx_shape = []
        for dim in onnx_tensor.type.tensor_type.shape.dim:
            onnx_shape.append(dim.dim_value)
        assert tuple(onnx_shape) == shape

    def test_export_variable_tensor(self):
        name = "variable_tensor"
        shape = (3, 224, 224)
        dtype = np.float32

        tensor = Variable(dtype=dtype, shape=shape, name=name)
        onnx_tensor = OnnxExporter.export_value_info_proto(tensor,
                                                           do_type_check=True)
        assert onnx_tensor.name == name
        assert onnx_tensor.type.tensor_type.elem_type == onnx.TensorProto.FLOAT

        onnx_shape = []
        for dim in onnx_tensor.type.tensor_type.shape.dim:
            onnx_shape.append(dim.dim_value)
        assert tuple(onnx_shape) == shape

    # TODO: Test subgraph export.
    def test_export_node(self):
        name = "TestNode"
        op = "Test"
        inputs = [Variable(name="input")]
        outputs = [Variable(name="output")]
        attrs = OrderedDict()
        attrs["float_attr"] = 4.0
        attrs["int_attr"] = 10
        attrs["str_attr"] = "constant"
        attrs["tensor_attr"] = Constant(
            "testTensor", np.ones(shape=(1, 2, 3, 4), dtype=np.float32))
        attrs["floats_attr"] = [1.0, 2.0, 3.0, 4.0]
        attrs["ints_attr"] = [4, 3, 2, 1]
        attrs["strings_attr"] = ["constant", "and", "variable"]
        node = Node(op=op,
                    name=name,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs)

        onnx_node = OnnxExporter.export_node(node)
        assert onnx_node.name == name
        assert onnx_node.op_type == op
        assert onnx_node.input == ["input"]
        assert onnx_node.output == ["output"]
        for onnx_attr, (name, attr) in zip(onnx_node.attribute, attrs.items()):
            assert onnx_attr.name == name
            if isinstance(attr, float):
                assert onnx_attr.f == attr
            elif isinstance(attr, int):
                assert onnx_attr.i == attr
            elif isinstance(attr, str):
                assert onnx_attr.s.decode() == attr
            elif isinstance(attr, Tensor):
                assert onnx_attr.t.SerializeToString(
                ) == OnnxExporter.export_tensor_proto(
                    attr).SerializeToString()
            elif isinstance(attr, list):
                if isinstance(attr[0], float):
                    assert onnx_attr.floats == attr
                elif isinstance(attr[0], int):
                    assert onnx_attr.ints == attr
                elif isinstance(attr[0], str):
                    assert [s.decode() for s in onnx_attr.strings] == attr
                else:
                    raise AssertionError(
                        "Unrecognized list attribute: ({:}: {:}) of type: {:}".
                        format(name, attr, type(attr)))
            else:
                raise AssertionError(
                    "Unrecognized attribute: ({:}: {:}) of type: {:}".format(
                        name, attr, type(attr)))

    # See test_importers for import correctness checks
    # This function first imports an ONNX graph, and then re-exports it with no changes.
    # The exported ONNX graph should exactly match the original.
    @pytest.mark.parametrize("model", [
        identity_model(),
        lstm_model(),
        scan_model(),
        dim_param_model(),
        initializer_is_output_model()
    ])
    def test_export_graph(self, model):
        onnx_graph = model.load().graph
        graph = OnnxImporter.import_graph(onnx_graph)
        exported_onnx_graph = OnnxExporter.export_graph(graph)
        imported_graph = OnnxImporter.import_graph(exported_onnx_graph)
        assert graph == imported_graph
        assert graph.opset == imported_graph.opset
        # ONNX exports the initializers in this model differently after importing - ONNX GS can't do much about this.
        if model.path != lstm_model().path:
            assert onnx_graph == exported_onnx_graph
Пример #2
0
 def test_import_graph_with_dim_param(self):
     model = dim_param_model()
     graph = OnnxImporter.import_graph(model.load().graph)
     model.assert_equal(graph)
Пример #3
0
class TestOnnxImporter(object):
    def test_import_variable_tensor(self):
        name = "test0"
        shape = [1, 2, 3, 4]
        onnx_tensor = onnx.helper.make_tensor_value_info(name, onnx.TensorProto.FLOAT, shape)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tensor.name == name
        assert tensor.dtype == np.float32
        assert tensor.shape == shape


    def test_import_constant_tensor(self):
        shape = (3, 3, 3)
        dtype = np.float32
        onnx_tensor = onnx.numpy_helper.from_array(np.ones(shape=shape, dtype=dtype))
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Constant
        assert tensor.dtype == dtype
        assert tensor.shape == shape


    def test_import_tensor_unknown_metadata(self):
        name = "test0"
        onnx_tensor = onnx.helper.make_empty_tensor_value_info(name)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tensor.name == name


    # TODO: Test all attribute types - missing graph
    def test_import_node(self):
        op = "Test"
        inputs = ["x"]
        outputs = ["y"]
        float_attr = 4.0
        int_attr = 10
        str_attr = "constant"
        tensor_vals = np.ones(shape=(1, 2, 3, 4), dtype=np.float32)
        tensor_attr = onnx.numpy_helper.from_array(tensor_vals)
        floats_attr = [1.0, 2.0, 3.0, 4.0]
        ints_attr = [4, 3, 2, 1]
        strings_attr = ["constant", "and", "variable"]

        onnx_node = onnx.helper.make_node(op, inputs, outputs, float_attr=float_attr, int_attr=int_attr, str_attr=str_attr, tensor_attr=tensor_attr, floats_attr=floats_attr, ints_attr=ints_attr, strings_attr=strings_attr)
        node = OnnxImporter.import_node(onnx_node, OrderedDict(), OrderedDict())
        assert node.op == op
        assert node.attrs["float_attr"] == float_attr
        assert node.attrs["int_attr"] == int_attr
        assert node.attrs["str_attr"] == str_attr
        # Tensor should turn into a Constant
        assert np.all(node.attrs["tensor_attr"].values == tensor_vals)
        assert node.attrs["floats_attr"] == floats_attr
        assert node.attrs["ints_attr"] == ints_attr
        assert node.attrs["strings_attr"] == strings_attr


    @pytest.mark.parametrize("model",
        [identity_model(), lstm_model(), scan_model(), dim_param_model(), initializer_is_output_model(), nested_dup_names()],
        ids=lambda model: str(model)
    )
    def test_import_graph(self, model):
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)


    def test_import_graph_value_info(self):
        model = onnx.shape_inference.infer_shapes(identity_model().load())
        graph = OnnxImporter.import_graph(model.graph)
        tensors = graph.tensors()
        assert all([type(tensor) == Variable and tensor.dtype is not None and tensor.shape for tensor in tensors.values()])


    def test_import_graph_tensor_map_preserved(self):
        model = identity_model()
        tensor_map = OrderedDict()
        graph = OnnxImporter.import_graph(model.load().graph, tensor_map=tensor_map)
        assert len(tensor_map) == 0
        model.assert_equal(graph)


    def test_import_graph_with_initializer(self):
        model = lstm_model()
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)


    def test_import_graph_with_dim_param(self):
        model = dim_param_model()
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)
Пример #4
0
class TestOnnxImporter(object):
    def test_import_variable_tensor(self):
        name = "test0"
        shape = (1, 2, 3, 4)
        onnx_tensor = onnx.helper.make_tensor_value_info(name, onnx.TensorProto.FLOAT, shape)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tensor.name == name
        assert tensor.dtype == np.float32
        assert tuple(tensor.shape) == shape

    def test_import_constant_tensor(self):
        shape = (3, 3, 3)
        dtype = np.float32
        onnx_tensor = onnx.numpy_helper.from_array(np.ones(shape=shape, dtype=dtype))
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Constant
        assert tensor.dtype == dtype
        assert tuple(tensor.shape) == shape

    def test_import_tensor_unknown_metadata(self):
        name = "test0"
        onnx_tensor = onnx.helper.make_empty_tensor_value_info(name)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tensor.name == name

    # An empty string in `dim_param` should be treated like a dynamic dimension
    def test_import_empty_dim_param_tensor(self):
        shape = (1, 2, "non-empty", "")
        onnx_tensor = onnx.helper.make_tensor_value_info("test0", onnx.TensorProto.FLOAT, shape)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tuple(tensor.shape) == shape

    # Sometimes, tensor shape is not known, in which case we shouldn't import it
    def test_import_unknown_shape_tensor(self):
        shape = None
        onnx_tensor = onnx.helper.make_tensor_value_info("test0", onnx.TensorProto.FLOAT, shape)
        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tensor.shape is None

    # Scalars can be represented in ONNX with a dim that includes neither a dim_param nor dim_value
    def test_import_empty_dim_tensor(self):
        shape = (None,)
        onnx_tensor = onnx.helper.make_tensor_value_info("test0", onnx.TensorProto.FLOAT, shape)
        onnx_tensor.type.tensor_type.shape.dim[0].ClearField("dim_value")
        onnx_tensor.type.tensor_type.shape.dim[0].ClearField("dim_param")

        tensor = OnnxImporter.import_tensor(onnx_tensor)
        assert type(tensor) == Variable
        assert tuple(tensor.shape) == shape

    # TODO: Test all attribute types - missing graph
    def test_import_node(self):
        op = "Test"
        inputs = ["x"]
        outputs = ["y"]
        float_attr = 4.0
        int_attr = 10
        str_attr = "constant"
        tensor_vals = np.ones(shape=(1, 2, 3, 4), dtype=np.float32)
        tensor_attr = onnx.numpy_helper.from_array(tensor_vals)
        floats_attr = [1.0, 2.0, 3.0, 4.0]
        ints_attr = [4, 3, 2, 1]
        strings_attr = ["constant", "and", "variable"]

        onnx_node = onnx.helper.make_node(
            op,
            inputs,
            outputs,
            float_attr=float_attr,
            int_attr=int_attr,
            str_attr=str_attr,
            tensor_attr=tensor_attr,
            floats_attr=floats_attr,
            ints_attr=ints_attr,
            strings_attr=strings_attr,
        )
        node = OnnxImporter.import_node(onnx_node, OrderedDict(), OrderedDict())
        assert node.op == op
        assert node.attrs["float_attr"] == float_attr
        assert node.attrs["int_attr"] == int_attr
        assert node.attrs["str_attr"] == str_attr
        # Tensor should turn into a Constant
        assert np.all(node.attrs["tensor_attr"].values == tensor_vals)
        assert node.attrs["floats_attr"] == floats_attr
        assert node.attrs["ints_attr"] == ints_attr
        assert node.attrs["strings_attr"] == strings_attr

    @pytest.mark.parametrize(
        "model",
        [
            identity_model(),
            lstm_model(),
            scan_model(),
            dim_param_model(),
            initializer_is_output_model(),
            nested_dup_names(),
            ext_weights(),
        ],
        ids=lambda model: str(model),
    )
    def test_import_graph(self, model):
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)

    def test_import_graph_value_info(self):
        model = onnx.shape_inference.infer_shapes(identity_model().load())
        graph = OnnxImporter.import_graph(model.graph)
        tensors = graph.tensors()
        assert all(
            [type(tensor) == Variable and tensor.dtype is not None and tensor.shape for tensor in tensors.values()]
        )

    def test_import_graph_tensor_map_preserved(self):
        model = identity_model()
        tensor_map = OrderedDict()
        graph = OnnxImporter.import_graph(model.load().graph, tensor_map=tensor_map)
        assert len(tensor_map) == 0
        model.assert_equal(graph)

    def test_import_graph_with_initializer(self):
        model = lstm_model()
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)

    def test_import_graph_with_dim_param(self):
        model = dim_param_model()
        graph = OnnxImporter.import_graph(model.load().graph)
        model.assert_equal(graph)