def checkCVResult(self, result, is_small_tilt_diff=False): return openCVcaller.checkOpenCVResult(self.logger, result, is_small_tilt_diff)
def checkCVResult(self,result, is_small_tilt_diff=False): return openCVcaller.checkOpenCVResult(self.logger, result, is_small_tilt_diff)
def trackStage(self, image0, tilt0, tilt, tilt0targets): #import pprint #print "SETTINGS:" #pprint.pprint(self.settings) self.logger.info('Running trackStage') self.logger.info('Returning to state of image0') presetname = image0['preset']['name'] emtarget = image0['emtarget'] pausetime = self.settings['pause'] self.presetsclient.toScope(presetname, emtarget) ### reset the tilt, just in case user changed it while picking targets self.instrument.tem.StagePosition = {'a': tilt0} if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' %(pausetime,)) time.sleep(pausetime) ### calculate tilt steps maxstepsize = radians(self.settings['stepsize']) tilts = self.calculateTiltSteps(tilt0, tilt, maxstepsize) self.logger.info('Tilts: %s' % ([("%.1f"%degrees(t)) for t in tilts],)) ## filter image medfilt = int(self.settings['medfilt']) lowfilt = float(self.settings['lowfilt']) imageold = image0 arrayold = numpy.asarray(imageold['image'], dtype=numpy.float32) if medfilt > 1: arrayold = ndimage.median_filter(arrayold, size=medfilt) if lowfilt > 0: arrayold = ndimage.gaussian_filter(arrayold, lowfilt) self.setImage(arrayold, 'Image') runningresult = numpy.identity(3, numpy.float32) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) retries = 0 #for tilt in tilts: ### use while loop so we can backtrack i = 0 while i < len(tilts)-1: i+=1 tilt = float("%.3f"%tilts[i]) self.logger.info('Going to tilt angle: %.2f' % (degrees(tilt),)) self.instrument.tem.StagePosition = {'a': tilt} is_small_tilt_diff = self.isSmallTiltDifference(tilts,i,tilt0) if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' %(pausetime,)) time.sleep(pausetime) self.logger.info('Acquire intermediate tilted parent image') #print 'acquire intertilt' imagenew = self.acquireCorrectedCameraImageData() arraynew = numpy.asarray(imagenew['image'], dtype=numpy.float32) ## if is_small_tilt_diff: ## # Don't filter if phase correlation will be used ## medfilt = 0 ## lowfilt = 0 ## if medfilt > 1: ## arraynew = ndimage.median_filter(arraynew, size=medfilt) ## if lowfilt > 0: ## arraynew = ndimage.gaussian_filter(arraynew, lowfilt) self.setImage(arraynew, 'Image') if is_small_tilt_diff: self.logger.info('Use phase correlation on small tilt') result = numpy.array(self.shiftmatrix_maker.register(arrayold, arraynew)) else: self.logger.info('Peter\'s openCV stuff') print 'tilt', tilts[i]*180/3.14159 try: result = openCVcaller.matchImages(arrayold, arraynew) self.logger.info("result matrix= "+str(numpy.asarray(result*100, dtype=numpy.int8).ravel())) except: self.logger.error('openCV MatchImages failed') return None,None ## REWRITE THIS PART LATER? check = openCVcaller.checkOpenCVResult(self, result) if check is False: self.logger.warning("openCV failed: redoing tilt %.2f"%(tilt,)) ### redo this tilt; becomes an infinite loop if the image goes black retries += 1 if retries <= 2: if i == len(tilts)-1: ### maybe the tilt angle is too high, reduce max angle by 5 percent tilts[len(tilts)-1] *= 0.95 i -= 1 else: retries = 0 print "Tilt openCV FAILED" self.logger.error("openCV failed: giving up") return None, None continue else: retries = 0 self.logger.info("result matrix= "+str(numpy.asarray(result*100, dtype=numpy.int8).ravel())) self.logger.info( "Inter Matrix: "+openCVcaller.affineToText(result) ) runningresult = numpy.dot(runningresult, result) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) self.logger.info( "Running Matrix: "+openCVcaller.affineToText(runningresult) ) self.logger.info("running result matrix= "+str(numpy.asarray(runningresult*100, dtype=numpy.int8).ravel())) imageold = imagenew arrayold = arraynew ### copied from Acquisition.acquire: ## store EMData to DB to prevent referencing errors self.publish(imageold['scope'], database=True) self.publish(imageold['camera'], database=True) ## convert CameraImageData to AcquisitionImageData dim = image0['camera']['dimension'] pixels = dim['x'] * dim['y'] pixeltype = str(image0['image'].dtype) imagedata = leginondata.AcquisitionImageData(initializer=imageold, preset=image0['preset'], label=self.name, target=image0['target'], list=None, emtarget=image0['emtarget'], version=0, tiltnumber=self.tiltnumber, pixels=pixels, pixeltype=pixeltype) self.setTargets([], 'Peak') self.publishDisplayWait(imagedata) self.logger.info( "FINAL Matrix: "+openCVcaller.affineToText(runningresult) ) #self.logger.info('Final Matrix: %s' % (runningresult,)) return (runningresult, imagedata)
def trackStage(self, image0, tilt0, tilt, tilt0targets): #import pprint #print "SETTINGS:" #pprint.pprint(self.settings) self.logger.info('Running trackStage') self.logger.info('Returning to state of image0') presetname = image0['preset']['name'] emtarget = image0['emtarget'] pausetime = self.settings['pause'] self.presetsclient.toScope(presetname, emtarget) ### reset the tilt, just in case user changed it while picking targets self.instrument.tem.StagePosition = {'a': tilt0} if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' % (pausetime, )) time.sleep(pausetime) ### calculate tilt steps maxstepsize = radians(self.settings['stepsize']) tilts = self.calculateTiltSteps(tilt0, tilt, maxstepsize) self.logger.info('Tilts: %s' % ([("%.1f" % degrees(t)) for t in tilts], )) ## filter image medfilt = int(self.settings['medfilt']) lowfilt = float(self.settings['lowfilt']) imageold = image0 arrayold = numpy.asarray(imageold['image'], dtype=numpy.float32) if medfilt > 1: arrayold = ndimage.median_filter(arrayold, size=medfilt) if lowfilt > 0: arrayold = ndimage.gaussian_filter(arrayold, lowfilt) self.setImage(arrayold, 'Image') runningresult = numpy.identity(3, numpy.float32) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) retries = 0 #for tilt in tilts: ### use while loop so we can backtrack i = 0 while i < len(tilts) - 1: i += 1 tilt = float("%.3f" % tilts[i]) self.logger.info('Going to tilt angle: %.2f' % (degrees(tilt), )) self.instrument.tem.StagePosition = {'a': tilt} is_small_tilt_diff = self.isSmallTiltDifference(tilts, i, tilt0) if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' % (pausetime, )) time.sleep(pausetime) self.logger.info('Acquire intermediate tilted parent image') #print 'acquire intertilt' imagenew = self.acquireCorrectedCameraImageData() arraynew = numpy.asarray(imagenew['image'], dtype=numpy.float32) ## if is_small_tilt_diff: ## # Don't filter if phase correlation will be used ## medfilt = 0 ## lowfilt = 0 ## if medfilt > 1: ## arraynew = ndimage.median_filter(arraynew, size=medfilt) ## if lowfilt > 0: ## arraynew = ndimage.gaussian_filter(arraynew, lowfilt) self.setImage(arraynew, 'Image') if is_small_tilt_diff: self.logger.info('Use phase correlation on small tilt') result = numpy.array( self.shiftmatrix_maker.register(arrayold, arraynew)) else: self.logger.info('Peter\'s openCV stuff') print 'tilt', tilts[i] * 180 / 3.14159 try: result = openCVcaller.matchImages(arrayold, arraynew) self.logger.info("result matrix= " + str( numpy.asarray(result * 100, dtype=numpy.int8).ravel())) except: self.logger.error('openCV MatchImages failed') return None, None ## REWRITE THIS PART LATER? check = openCVcaller.checkOpenCVResult(self, result) if check is False: self.logger.warning("openCV failed: redoing tilt %.2f" % (tilt, )) ### redo this tilt; becomes an infinite loop if the image goes black retries += 1 if retries <= 2: if i == len(tilts) - 1: ### maybe the tilt angle is too high, reduce max angle by 5 percent tilts[len(tilts) - 1] *= 0.95 i -= 1 else: retries = 0 print "Tilt openCV FAILED" self.logger.error("openCV failed: giving up") return None, None continue else: retries = 0 self.logger.info( "result matrix= " + str(numpy.asarray(result * 100, dtype=numpy.int8).ravel())) self.logger.info("Inter Matrix: " + openCVcaller.affineToText(result)) runningresult = numpy.dot(runningresult, result) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) self.logger.info("Running Matrix: " + openCVcaller.affineToText(runningresult)) self.logger.info("running result matrix= " + str( numpy.asarray(runningresult * 100, dtype=numpy.int8).ravel())) imageold = imagenew arrayold = arraynew ### copied from Acquisition.acquire: ## store EMData to DB to prevent referencing errors self.publish(imageold['scope'], database=True) self.publish(imageold['camera'], database=True) ## convert CameraImageData to AcquisitionImageData dim = image0['camera']['dimension'] pixels = dim['x'] * dim['y'] pixeltype = str(image0['image'].dtype) imagedata = leginondata.AcquisitionImageData( initializer=imageold, preset=image0['preset'], label=self.name, target=image0['target'], list=None, emtarget=image0['emtarget'], version=0, tiltnumber=self.tiltnumber, pixels=pixels, pixeltype=pixeltype) self.setTargets([], 'Peak') self.publishDisplayWait(imagedata) self.logger.info("FINAL Matrix: " + openCVcaller.affineToText(runningresult)) #self.logger.info('Final Matrix: %s' % (runningresult,)) return (runningresult, imagedata)
def trackStage(self, image0, tilt0, tilt, tilt0targets): self.logger.info('Running trackStage') retriesmax = 15 retries = retriesmax blur = 3 thresh = 0 self.logger.info('Returning to state of image0') presetname = image0['preset']['name'] emtarget = image0['emtarget'] pausetime = self.settings['pause'] self.presetsclient.toScope(presetname, emtarget) ### reset the tilt, just in case user changed it while picking targets self.instrument.tem.StagePosition = {'a': tilt0} if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' % (pausetime, )) time.sleep(pausetime) ### calculate tilt steps maxstepsize = radians(self.settings['stepsize']) tilts = self.calculateTiltSteps(tilt0, tilt, maxstepsize) self.logger.info('Tilts: %s' % ([("%.1f" % degrees(t)) for t in tilts], )) imageold = image0 arrayold = numpy.asarray(imageold['image'], dtype=numpy.float32) self.setImage(arrayold, 'Image') runningresult = numpy.identity(3, numpy.float32) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) #for tilt in tilts: ### use while loop so we can backtrack i = 0 while i < len(tilts) - 1: i += 1 tilt = float("%.3f" % tilts[i]) self.logger.info('Going to tilt angle: %.2f' % (degrees(tilt), )) self.instrument.tem.StagePosition = {'a': tilt} is_small_tilt_diff = self.isSmallTiltDifference(tilts, i, tilt0) if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' % (pausetime, )) time.sleep(pausetime) self.logger.info('Acquire intermediate tilted parent image') imagenew = self.acquireCorrectedCameraImageData() arraynew = numpy.asarray(imagenew['image'], dtype=numpy.float32) self.setImage(arraynew, 'Image') if is_small_tilt_diff: self.logger.info('Use phase correlation on small tilt') result = numpy.array( self.shiftmatrix_maker.register(arrayold, arraynew)) else: print '============ openCV stuff ============' self.logger.info('openCV stuff') minsize = self.settings['minsize'] maxsize = self.settings['maxsize'] openCVcaller.checkArrayMinMax(self, arrayold, arraynew) print 'tilt', tilts[i] * 180 / 3.14159 result = openCVcaller.MatchImages(arrayold, arraynew, blur, thresh) self.logger.info( "result matrix= " + str(numpy.asarray(result * 100, dtype=numpy.int8).ravel())) print "RESULT", result check = openCVcaller.checkOpenCVResult(self, result, is_small_tilt_diff) if check is False: self.logger.warning("openCV failed: redoing tilt %.2f" % (tilt, )) if retries: i -= 1 retries -= 1 if retries <= retriesmax / 2: thresh = 1 print "THRESH = 1" print "retries =", retries, "out of", retriesmax else: print "Tilt openCV FAILED" self.logger.error("openCV failed: giving up") self.instrument.tem.StagePosition = {'a': tilt0} return None, None continue else: retries = 0 print '============ openCV stuff done ============' self.logger.info( "result matrix= " + str(numpy.asarray(result * 100, dtype=numpy.int8).ravel())) self.logger.info("Inter Matrix: " + openCVcaller.affineToText(result)) runningresult = numpy.dot(runningresult, result) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) self.logger.info("Running Matrix: " + openCVcaller.affineToText(runningresult)) self.logger.info("running result matrix= " + str( numpy.asarray(runningresult * 100, dtype=numpy.int8).ravel())) imageold = imagenew arrayold = arraynew ### copied from Acquisition.acquire: ## store EMData to DB to prevent referencing errors self.publish(imageold['scope'], database=True) self.publish(imageold['camera'], database=True) ## convert CameraImageData to AcquisitionImageData dim = image0['camera']['dimension'] pixels = dim['x'] * dim['y'] pixeltype = str(image0['image'].dtype) imagedata = leginondata.AcquisitionImageData( initializer=imageold, preset=image0['preset'], label=self.name, target=image0['target'], list=None, emtarget=image0['emtarget'], version=0, tiltnumber=self.tiltnumber, pixels=pixels, pixeltype=pixeltype) self.setTargets([], 'Peak') self.publishDisplayWait(imagedata) self.logger.info("FINAL Matrix: " + openCVcaller.affineToText(runningresult)) return (runningresult, imagedata)
def trackStage(self, image0, tilt0, tilt, tilt0targets): self.logger.info('Running trackStage') retriesmax = 15 retries = retriesmax blur = 3 thresh = 0 self.logger.info('Returning to state of image0') presetname = image0['preset']['name'] emtarget = image0['emtarget'] pausetime = self.settings['pause'] self.presetsclient.toScope(presetname, emtarget) ### reset the tilt, just in case user changed it while picking targets self.instrument.tem.StagePosition = {'a': tilt0} if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' %(pausetime,)) time.sleep(pausetime) ### calculate tilt steps maxstepsize = radians(self.settings['stepsize']) tilts = self.calculateTiltSteps(tilt0, tilt, maxstepsize) self.logger.info('Tilts: %s' % ([("%.1f"%degrees(t)) for t in tilts],)) imageold = image0 arrayold = numpy.asarray(imageold['image'], dtype=numpy.float32) self.setImage(arrayold, 'Image') runningresult = numpy.identity(3, numpy.float32) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) #for tilt in tilts: ### use while loop so we can backtrack i = 0 while i < len(tilts)-1: i+=1 tilt = float("%.3f"%tilts[i]) self.logger.info('Going to tilt angle: %.2f' % (degrees(tilt),)) self.instrument.tem.StagePosition = {'a': tilt} is_small_tilt_diff = self.isSmallTiltDifference(tilts,i,tilt0) if pausetime > 0.1: self.logger.info('Pausing %.1f seconds' %(pausetime,)) time.sleep(pausetime) self.logger.info('Acquire intermediate tilted parent image') imagenew = self.acquireCorrectedCameraImageData() arraynew = numpy.asarray(imagenew['image'], dtype=numpy.float32) self.setImage(arraynew, 'Image') if is_small_tilt_diff: self.logger.info('Use phase correlation on small tilt') result = numpy.array(self.shiftmatrix_maker.register(arrayold, arraynew)) else: print '============ openCV stuff ============' self.logger.info('openCV stuff') minsize = self.settings['minsize'] maxsize = self.settings['maxsize'] openCVcaller.checkArrayMinMax(self, arrayold, arraynew) print 'tilt', tilts[i]*180/3.14159 result = openCVcaller.MatchImages(arrayold, arraynew, blur, thresh) self.logger.info("result matrix= "+str(numpy.asarray(result*100, dtype=numpy.int8).ravel())) print "RESULT", result check = openCVcaller.checkOpenCVResult(self, result, is_small_tilt_diff) if check is False: self.logger.warning("openCV failed: redoing tilt %.2f"%(tilt,)) if retries: i -= 1 retries -= 1 if retries <= retriesmax/2: thresh = 1 print "THRESH = 1" print "retries =", retries, "out of", retriesmax else: print "Tilt openCV FAILED" self.logger.error("openCV failed: giving up") self.instrument.tem.StagePosition = {'a': tilt0} return None, None continue else: retries = 0 print '============ openCV stuff done ============' self.logger.info("result matrix= "+str(numpy.asarray(result*100, dtype=numpy.int8).ravel())) self.logger.info( "Inter Matrix: "+openCVcaller.affineToText(result) ) runningresult = numpy.dot(runningresult, result) # transformTargets for display purposes only self.transformTargets(runningresult, tilt0targets) self.logger.info( "Running Matrix: "+openCVcaller.affineToText(runningresult) ) self.logger.info("running result matrix= "+str(numpy.asarray(runningresult*100, dtype=numpy.int8).ravel())) imageold = imagenew arrayold = arraynew ### copied from Acquisition.acquire: ## store EMData to DB to prevent referencing errors self.publish(imageold['scope'], database=True) self.publish(imageold['camera'], database=True) ## convert CameraImageData to AcquisitionImageData dim = image0['camera']['dimension'] pixels = dim['x'] * dim['y'] pixeltype = str(image0['image'].dtype) imagedata = leginondata.AcquisitionImageData(initializer=imageold, preset=image0['preset'], label=self.name, target=image0['target'], list=None, emtarget=image0['emtarget'], version=0, tiltnumber=self.tiltnumber, pixels=pixels, pixeltype=pixeltype) self.setTargets([], 'Peak') self.publishDisplayWait(imagedata) self.logger.info( "FINAL Matrix: "+openCVcaller.affineToText(runningresult) ) return (runningresult, imagedata)