Пример #1
0
def main():
    # warnings.filterwarnings('error')
    warnings.simplefilter(action='ignore', category=RuntimeWarning)

    # Set up the necessary file paths for file loading
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    matlab_generated_file_path = os.path.join(
        base_path, 'example_video_feature_file.mat')
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    # Generate the OpenWorm version of the features
    openworm_features = mv.WormFeatures(nw)

    # Load the Schafer Lab Matlab-code-generated features from disk
    matlab_worm_features = \
        mv.WormFeatures.from_disk(matlab_generated_file_path)

    df = openworm_features.get_DataFrame()

    movement_df = openworm_features.get_movement_DataFrame()

    # investigating path dwelling.
    plt.plot(df.ix[0].data_array)
    plt.plot(np.sort(df.ix[0].data_array))
    plt.show()
def test_features():
    """
    Compare Schafer-generated features with our new code's generated features
    """
    # Set up the necessary file paths for file loading
    #----------------------
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    matlab_generated_file_path = os.path.join(
        base_path, 'example_video_feature_file.mat')
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # OPENWORM
    #----------------------
    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    # Generate the OpenWorm version of the features
    openworm_features = mv.WormFeatures(nw)

    # SCHAFER LAB
    #----------------------
    # Load the Matlab codes generated features from disk
    matlab_worm_features = \
        mv.WormFeatures.from_disk(matlab_generated_file_path)

    # COMPARISON
    #----------------------
    # Show the results of the comparison
    print("\nComparison of computed features to those computed with "
          "old Matlab code:")

    feature_correlations = {}

    # Compare each of the 93 features to make sure they are equal
    for feature in openworm_features.features:
        f_matlab = matlab_worm_features.get_features(feature.name)
        f_openworm = openworm_features.get_features(feature.name)

        cur_corr = mv.utils.correlation(f_matlab.value, f_openworm.value,
                                        feature.name)

        # Handle the case where we did not pass arrays to correlation and
        # therefore got back None
        if not cur_corr:
            cur_corr = 0

        # DEBUG: suppress this assertion since it is not passing
        # As of June 2017, however, we've validated that the differences seen
        # are acceptable for various reasons.
        #assert(cur_corr >= 0.99)

        feature_correlations[feature.name] = cur_corr

        print(feature.name, ": %.2f" % cur_corr)

    print("\nDone validating features")
Пример #3
0
def main():
    # Set up the necessary file paths for file loading
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    # Generate the OpenWorm version of the features
    fpo = mv.FeatureProcessingOptions()
    fpo.disable_feature_sections(['morphology'])
    openworm_features = mv.WormFeatures(nw, fpo)

    openworm_features.timer.summarize()
Пример #4
0
def getFeatStats(worm, wStats):
    if not isinstance(wStats, WormStats):
        wStats = WormStats()
        
    worm_openworm = worm.to_open_worm()
    assert worm_openworm.skeleton.shape[1] == 2
    worm_features = mv.WormFeatures(worm_openworm)
    
    def _get_worm_stat(func):
        # calculate the mean value of each feature
        worm_stat = wStats.getWormStats(worm_features, func)
        for field in wStats.extra_fields:
            worm_stat[field] = getattr(worm, field)
        return worm_stat
        
    worm_stats = {stat: _get_worm_stat(FUNC_FOR_DIV[stat]) for stat in FUNC_FOR_DIV}
    return worm_features, worm_stats
def create_figure3():
    # Load from file a normalized worm, as calculated by Schafer Lab code
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    schafer_nw_file_path = os.path.join(base_path,
                                        "example_video_norm_worm.mat")
    nw = mv.NormalizedWorm.from_schafer_file_factory(schafer_nw_file_path)

    # Placeholder for video metadata
    nw.video_info.video_name = "Example name"

    # We need to create WormFeatures to get the motion codes
    # (telling us in each frame if the worm is moving forward, backward, etc,
    #  which is nice to have so we can annotate the plot with that info)
    wf = mv.WormFeatures(nw)
    motion_codes = wf.locomotion.motion_mode

    # Plot an animation of the worm and its motion codes
    wp = mv.NormalizedWormPlottable(nw, motion_codes)
def test_features():
    """
    Compare Schafer-generated features with our new code's generated features
    """
    # Set up the necessary file paths for file loading
    #----------------------
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    matlab_generated_file_path = os.path.join(
        base_path, 'example_video_feature_file.mat')
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # OPENWORM
    #----------------------
    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    # Generate the OpenWorm version of the features
    openworm_features = mv.WormFeatures(nw)

    # SCHAFER LAB
    #----------------------
    # Load the Matlab codes generated features from disk
    matlab_worm_features = \
        mv.WormFeatures.from_disk(matlab_generated_file_path)

    # COMPARISON
    #----------------------
    # Show the results of the comparison
    print("\nComparison of computed features to those computed with "
          "old Matlab code:")

    categories = ['locomotion', 'posture', 'morphology', 'path']

    # Compare each feature category to make sure they are equal
    for category in categories:
        is_test_passed = (getattr(matlab_worm_features,
                                  category) == getattr(openworm_features,
                                                       category))
        print(str.capitalize(category) + ": " + str(is_test_passed))
        assert (is_test_passed)

    print("\nDone validating features")
Пример #7
0
def getFeaturesOpenWorm(worm, wStats=[]):
    if not isinstance(wStats, WormStatsClass):
        wStats = WormStatsClass()

    #let's make a copy of the skeletons before chaning axis
    skeletons = worm.skeleton.copy()

    #IMPORTANT change axis to an openworm format before calculating features
    assert worm.skeleton.shape[2] == 2
    worm.changeAxis()
    #OpenWorm feature calculation
    assert worm.skeleton.shape[1] == 2
    worm_features = mv.WormFeatures(worm)

    #convert the timeseries features into a recarray
    tot_frames = worm.timestamp.size
    timeseries_data = np.full(tot_frames, np.nan, wStats.feat_timeseries_dtype)

    timeseries_data['timestamp'] = worm.timestamp
    timeseries_data['worm_index'] = worm.worm_index
    timeseries_data['motion_modes'] = worm_features._features[
        'locomotion.motion_mode'].value

    for feat in wStats.feat_timeseries:
        feat_obj = wStats.features_info.loc[feat, 'feat_name_obj']
        timeseries_data[feat] = worm_features._features[feat_obj].value

    #convert the events features into a dictionary
    events_data = {}
    for feat in wStats.feat_events:
        feat_obj = wStats.features_info.loc[feat, 'feat_name_obj']
        events_data[feat] = worm_features._features[feat_obj].value

    #calculate the mean value of each feature
    worm_stats = wStats.getWormStats(worm_features, np.mean)
    worm_stats['n_frames'] = worm.n_frames
    worm_stats['worm_index'] = worm.worm_index
    worm_stats['n_valid_skel'] = worm.n_valid_skel

    return timeseries_data, events_data, worm_stats, skeletons
def main():
    """
    Compare Schafer-generated features with our new code's generated features

    """
    # Set up the necessary file paths for file loading
    #----------------------
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    matlab_generated_file_path = os.path.join(
        base_path, 'example_video_feature_file.mat')
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # OPENWORM
    #----------------------
    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    # Generate the OpenWorm version of the features
    print('Computing example features from normalized worm')
    openworm_features = mv.WormFeatures(nw)

    # SCHAFER LAB
    #----------------------
    print('Loading example features from disk')
    matlab_worm_features = mv.WormFeatures.from_disk(
        matlab_generated_file_path)

    # COMPARISON
    #----------------------
    # TODO: I think we should add an iteration method for worm_features

    for feature in openworm_features:
        other_feature = matlab_worm_features.get_features(feature.name)
        is_same = feature == other_feature
        if not is_same:
            print('Feature mismatch: %s' % feature.name)
            #import pdb
            # pdb.set_trace()

    print("\nDone validating features")
Пример #9
0
def main():
    """
    Compare Schafer-generated features with our new code's generated features

    """
    # Set up the necessary file paths for file loading
    #----------------------
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    data_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    # OPENWORM
    #----------------------
    # Load the normalized worm from file
    nw = mv.NormalizedWorm.from_schafer_file_factory(data_file_path)

    specs = mv.get_feature_specs()

    #    '^locomotion\.' => string that starts with 'locomotion.'
    loco_specs = specs[specs['feature_name'].str.contains('^locomotion\.')]

    #loco_names = loco_specs['feature_name']

    # Generate the OpenWorm movement validation repo version of the features
    print('Computing example features from normalized worm')
    openworm_features = mv.WormFeatures(nw, specs=loco_specs)

    f = openworm_features.features
    feature_names = [x.name for x in f]

    # We might want to expose an interface that returns a list of features
    # that optionally allows temporary features and/or even non-requested
    # features
    d = openworm_features._features
    all_feature_names = [d[x].name for x in d]
    # all_feature_names contains morphology.length which was not requested

    # Not sure what test to run ...
    # Let's marvel at the name filtering!!!!

    print('All done with test_spec_filtering.py')
Пример #10
0
def main():
    # TODO:
    # h_ventral_contour, h_dorsal_contour, video_info = \
    #    Kezhi_CV_Algorithm('test.avi')

    #experiment_info = mv.ExperimentInfo.from_CSV_factory('test.csv')

    #bw = BasicWorm.from_h_contour_factory(h_ventral_contour, h_dorsal_contour)
    #bw.video_info = video_info

    #feature_spec = mv.WormFeatures.get_feature_spec(extended=True)

    VERBOSE = True

    RUN_FULL = False
    #If true the normalized worm is computed from the basic worm input
    #If false it is preloaded (much faster)

    # TEMPORARY----------------------------
    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    schafer_bw_file_path = os.path.join(
        base_path, "example_contour_and_skeleton_info.mat")

    base_path = os.path.abspath(mv.user_config.EXAMPLE_DATA_PATH)
    control_path = os.path.join(base_path, '30m_wait', 'R')

    control_files = get_matlab_filepaths(control_path)

    if len(control_files) == 0:
        raise Exception(
            'Missing the example files in the "<example_root>/30m_wait/R" diretory'
        )

    nw_file_path = os.path.join(base_path, "example_video_norm_worm.mat")

    #example_video_norm_worm.mat

    # -------------------------------------

    # TODO: get this line to work:
    #bw = example_worms()

    #TODO - we could support tierpsy calls which are probably better ...
    if RUN_FULL:
        print('Converting bacic worm to normalized worm')
        bw = mv.BasicWorm.from_schafer_file_factory(schafer_bw_file_path)
        nw = mv.NormalizedWorm.from_BasicWorm_factory(bw)
    else:
        nw = mv.NormalizedWorm.from_schafer_file_factory(nw_file_path)

    # DEBUG
    #wp = mv.NormalizedWormPlottable(nw, interactive=False)
    # wp.show()
    # return

    print('Extracting features from normalized worm')
    wf = mv.WormFeatures(nw)
    experiment_features = [wf, wf]

    # Compute histograms on our files
    experiment_histograms = mv.HistogramManager(experiment_features,
                                                verbose=VERBOSE)

    #Note this doesn't allow feature expansion since we are loading in histograms
    #We would need to load first, maniuplate, then pass in to histogram creator
    control_histograms = mv.HistogramManager(control_files, verbose=VERBOSE)
    experiment_histograms.plot_information()

    print('Computing statistics on histograms')
    # Compute statistics
    stat = mv.StatisticsManager(experiment_histograms, control_histograms)
    #print(stat[0])
    stat[0].plot(ax=None, use_alternate_plot=True)

    print("Nonparametric p and q values are %.5f and %.5f, respectively." %
          (stat.min_p_wilcoxon, stat.min_q_wilcoxon))
    for file in files:
        if file.endswith(".mat"):
            print(file)
            file_ind = file_ind + 1

            # Load a "basic" worm from a file
            #bw = mv.BasicWorm.from_schafer_file_factory("example_contour_and_skeleton_info.mat")
            bw = mv.BasicWorm.from_schafer_file_factory(root + file)

            # Normalize the basic worm
            nw = mv.NormalizedWorm.from_BasicWorm_factory(bw)
            ## Plot this normalized worm
            #wp = mv.NormalizedWormPlottable(nw, interactive=False)
            #wp.show()
            # Obtain features
            wf = mv.WormFeatures(nw)

            wf_ess = {}

            # if read None data, use 0 instead
            for ind in range(fea_no):
                wf_ess[feature_field[ind]] = wf._features[
                    feature_field[ind]].value
                if (wf_ess[feature_field[ind]]) is None:
                    wf_ess[feature_field[ind]] = 0

            # save the essential features to hdf5 file
            with h5py.File(root + file[:-9] + '_esFea.h5', 'w') as hf:
                for k, v in wf_ess.items():
                    hf.create_dataset(k, data=v)
#            plt.plot(wf_ess[feature_field[21]])