Пример #1
0
def grid2D(shape):
    """
	:param `shape`: shape of the grid tuple (nb_rows,nb_columns)
	"""
    t = Topomesh(2)
    positions = {}
    NBI, NBJ = shape
    NBCELLS = NBI * NBJ
    xincr = 1. / NBI
    yincr = 1. / NBJ
    cell_grid = Grid((NBI, NBJ))
    for ind in cell_grid:
        cid = t.add_wisp(0, ind)
    point_grid = Grid((NBI + 1, NBJ + 1))
    for ind in point_grid:
        i, j = point_grid.coordinates(ind)
        eid = t.add_wisp(2, ind)
        positions[eid] = Vector3(xincr * i, yincr * j, 0)
    #murs verticaux
    for j in xrange(NBJ):
        for i in xrange(NBI + 1):
            wid = t.add_wisp(1)
            t.link(1, wid, point_grid.index((i, j)))
            t.link(1, wid, point_grid.index((i, j + 1)))
            if i < NBI:
                t.link(0, cell_grid.index((i, j)), wid)
            if i > 0:
                t.link(0, cell_grid.index((i - 1, j)), wid)
    #murs horizontaux
    for i in xrange(NBI):
        for j in xrange(NBJ + 1):
            wid = t.add_wisp(1)
            t.link(1, wid, point_grid.index((i, j)))
            t.link(1, wid, point_grid.index((i + 1, j)))
            if j < NBJ:
                t.link(0, cell_grid.index((i, j)), wid)
            if j > 0:
                t.link(0, cell_grid.index((i, j - 1)), wid)
    #et voila
    return t, positions
Пример #2
0
def grid3D(shape):
    """
	:param `shape`: shape of the grid tuple (nb_rows,nb_columns,nb_slices)
	"""
    from celltissue import PolyhedralTissue
    from celltissue.geometry import Point, Segment
    t = PolyhedralTissue(3)
    positions = Mesh2D()
    NBI, NBJ, NBK = shape
    NBCELLS = NBI * NBJ * NBK
    xincr = 1. / NBI
    yincr = 1. / NBJ
    zincr = 1. / NBK
    cell_grid = Grid((NBI, NBJ, NBK))
    for ind in xrange(len(cell_grid)):
        cid = t.add_wisp(0, ind)
    point_grid = Grid((NBI + 1, NBJ + 1, NBK + 1))
    for ind in point_grid:
        i, j, k = point_grid.coordinates(ind)
        positions.add_point(xyz(xincr * i, yincr * j, zincr * k), ind)
    #edges
    JKedges = Grid((NBI, NBJ + 1, NBK + 1))
    JK = {}
    for ind in JKedges:
        i, j, k = JKedges.coordinates(ind)
        eid = t.add_wisp(2)
        t.set_geometry(2,eid,Segment([Point(point_grid.index( (i,j,k) )),\
              Point(point_grid.index( (i+1,j,k) ))] ))
        JK[(i, j, k)] = eid
    IKedges = Grid((NBI + 1, NBJ, NBK + 1))
    IK = {}
    for ind in IKedges:
        i, j, k = IKedges.coordinates(ind)
        eid = t.add_wisp(2)
        t.set_geometry(2,eid,Segment([Point(point_grid.index( (i,j,k) )),\
              Point(point_grid.index( (i,j+1,k) ))] ))
        IK[(i, j, k)] = eid
    IJedges = Grid((NBI + 1, NBJ + 1, NBK))
    IJ = {}
    for ind in IJedges:
        i, j, k = IJedges.coordinates(ind)
        eid = t.add_wisp(2)
        t.set_geometry(2,eid,Segment([Point(point_grid.index( (i,j,k) )),\
              Point(point_grid.index( (i,j,k+1) ))] ))
        IJ[(i, j, k)] = eid
    #murs
    for k in xrange(NBK + 1):
        for j in xrange(NBJ):
            for i in xrange(NBI):
                wid = t.add_wisp(1)
                t.link(1, wid, IK[(i, j, k)])
                t.link(1, wid, IK[(i + 1, j, k)])
                t.link(1, wid, JK[(i, j, k)])
                t.link(1, wid, JK[(i, j + 1, k)])
                if k < NBK:
                    t.link(0, cell_grid.index((i, j, k)), wid)
                if k > 0:
                    t.link(0, cell_grid.index((i, j, k - 1)), wid)
    for k in xrange(NBK):
        for j in xrange(NBJ + 1):
            for i in xrange(NBI):
                wid = t.add_wisp(1)
                t.link(1, wid, IJ[(i, j, k)])
                t.link(1, wid, IJ[(i + 1, j, k)])
                t.link(1, wid, JK[(i, j, k)])
                t.link(1, wid, JK[(i, j, k + 1)])
                if j < NBJ:
                    t.link(0, cell_grid.index((i, j, k)), wid)
                if j > 0:
                    t.link(0, cell_grid.index((i, j - 1, k)), wid)
    for k in xrange(NBK):
        for j in xrange(NBJ):
            for i in xrange(NBI + 1):
                wid = t.add_wisp(1)
                t.link(1, wid, IK[(i, j, k)])
                t.link(1, wid, IK[(i, j, k + 1)])
                t.link(1, wid, IJ[(i, j, k)])
                t.link(1, wid, IJ[(i, j + 1, k)])
                if i < NBI:
                    t.link(0, cell_grid.index((i, j, k)), wid)
                if i > 0:
                    t.link(0, cell_grid.index((i - 1, j, k)), wid)
    return t, positions
from openalea.container import Grid

g = Grid((2, 3))
print "dim", g.dim()
print "shape", g.shape()
print "size", g.size(), len(g)
for i in g:
    print "iter", i, "coord", g.coordinates(i), "index", g.index(
        g.coordinates(i))

g = Grid((2, 3, 4))
print "dim", g.dim()
print "shape", g.shape()
print "size", g.size(), len(g)
for i in g:
    print "iter", i, "coord", g.coordinates(i), "index", g.index(
        g.coordinates(i))