Пример #1
0
def test_graph_from_image(visual=False):
    im = imread("segmentation.inr.gz")
    graph = graph_from_image(im)
    if visual:
        Viewer.display(
            graph2pglscene(graph, graph.vertex_property('barycenter'),
                           graph.vertex_property('L1')))
Пример #2
0
def test_graph_from_simple_image(visual=False):
    im = np.array([[1, 2, 7, 7, 1, 1], [1, 6, 5, 7, 3, 3], [2, 2, 1, 7, 3, 3],
                   [1, 1, 1, 4, 1, 1]])
    borders = SpatialImageAnalysis(im).cells_in_image_margins()
    print '**', SpatialImageAnalysis(im).boundingbox(real=False)
    #~ print borders
    #~ print np.unique(im)
    graph = graph_from_image(im)

    #~ print list(graph.vertices())
    #~ print map(graph.edge_vertices,graph.edges())
    #~ print list(graph.vertex_property_names())
    #~ print list(graph.edge_property_names())
    for propname in graph.vertex_property_names():
        print propname
        print graph.vertex_property(propname)

    #~ for propname in graph.edge_property_names():
    #~ print propname
    #~ print [(i,graph.edge_vertices(i),j) for i,j in graph.edge_property(propname).iteritems()]
    if visual:
        Viewer.display(
            graph2pglscene(graph, graph.vertex_property('barycenter'),
                           graph.vertex_property('border')))
def test_graph_from_simple_image(visual = False):
    im = np.array([[1, 2, 7, 7, 1, 1],
                  [1, 6, 5, 7, 3, 3],
                  [2, 2, 1, 7, 3, 3],
                  [1, 1, 1, 4, 1, 1]])
    borders = SpatialImageAnalysis(im).cells_in_image_margins()
    print '**', SpatialImageAnalysis(im).boundingbox(real=False)
    #~ print borders
    #~ print np.unique(im)
    graph = graph_from_image(im)
    
    #~ print list(graph.vertices())
    #~ print map(graph.edge_vertices,graph.edges())
    #~ print list(graph.vertex_property_names())
    #~ print list(graph.edge_property_names())
    for propname in graph.vertex_property_names():
        print propname
        print graph.vertex_property(propname)

    #~ for propname in graph.edge_property_names():
        #~ print propname
        #~ print [(i,graph.edge_vertices(i),j) for i,j in graph.edge_property(propname).iteritems()]
    if visual :
        Viewer.display(graph2pglscene(graph,graph.vertex_property('barycenter'),graph.vertex_property('border')))
Пример #4
0
def link_polydata_triangle_cells(polydata,img,img_graph=None):
    if img_graph is None:
        from openalea.image.algo.graph_from_image   import graph_from_image
        img_graph = graph_from_image(img,spatio_temporal_properties=['barycenter','volume'],ignore_cells_at_stack_margins = False,property_as_real=True)

    polydata_cell_data = polydata.GetCellData().GetArray(0)

    start_time = time()
    print "    --> Listing points"
    polydata_points = np.array([polydata.GetPoints().GetPoint(i) for i in xrange(polydata.GetPoints().GetNumberOfPoints())])
    end_time = time()
    print "    <-- Listing points               [",end_time - start_time,"s]"

    start_time = time()
    print "    --> Merging points"
    point_ids = {}
    for p in xrange(polydata.GetPoints().GetNumberOfPoints()):
        point_ids[tuple(polydata_points[p])] = []
    for p in xrange(polydata.GetPoints().GetNumberOfPoints()):
        point_ids[tuple(polydata_points[p])] += [p]

    unique_points = array_unique(polydata_points)
    n_points = unique_points.shape[0]

    point_unique_id = {}
    for p in xrange(n_points):
        for i in point_ids[tuple(unique_points[p])]:
            point_unique_id[i] = p
    end_time = time()
    print "    <-- Merging points               [",end_time - start_time,"s]"

    triangle_cell_start_time = time()
    print "    --> Listing triangles"
    print "      - ",polydata.GetNumberOfCells()," triangles"
    polydata_triangles = np.sort([[polydata.GetCell(t).GetPointIds().GetId(i) for i in xrange(3)] for t in xrange(polydata.GetNumberOfCells())])   
    print "      - ",array_unique(polydata_triangles).shape[0]," unique triangles"
    # polydata_triangle_points = [polydata.GetCell(t).GetPointIds() for t in xrange(polydata.GetNumberOfCells())]
    # polydata_triangles = np.sort([[triangle_points.GetId(i) for i in xrange(3)] for triangle_points in polydata_triangle_points])   
    polydata_triangles = np.sort(array_dict(point_unique_id).values(polydata_triangles)) 
    print "      - ",array_unique(polydata_triangles).shape[0]," unique triangles (merged vertices)"
    triangle_cell_end_time = time()
    print "    <-- Listing triangles            [",triangle_cell_end_time - triangle_cell_start_time,"s]"
    raw_input()

    triangle_cell_start_time = time()
    print "    --> Initializing triangle cells"
    triangle_cells = {}
    for t in xrange(polydata.GetNumberOfCells()):
        triangle_cells[tuple(polydata_triangles[t])] = []  
        for i in xrange(10):
            if t == (i*polydata.GetNumberOfCells())/10:
                print "     --> Initializing triangle cells (",10*i,"%)"
    triangle_cell_end_time = time()
    print "    <-- Initializing triangle cells  [",triangle_cell_end_time - triangle_cell_start_time,"s]"

    triangle_cell_start_time = time()
    for t in xrange(polydata.GetNumberOfCells()):
        triangle_cells[tuple(polydata_triangles[t])] += list(polydata_cell_data.GetTuple(t))
        for i in xrange(100):
            if t == (i*polydata.GetNumberOfCells())/100:
                triangle_cell_end_time = time()
                print "     --> Listing triangle cells (",i,"%) [",(triangle_cell_end_time-triangle_cell_start_time)/(polydata.GetNumberOfCells()/100.),"s]"
                triangle_cell_start_time = time()

    triangle_cell_start_time = time()
    print "    --> Cleaning triangle cells"
    for t in xrange(polydata.GetNumberOfCells()):
        triangle_cells[tuple(polydata_triangles[t])] = np.unique(triangle_cells[tuple(polydata_triangles[t])])  
        for i in xrange(10):
            if t == (i*polydata.GetNumberOfCells())/10:
                print "     --> Cleaning triangle cells (",10*i,"%)"
    triangle_cell_end_time = time()
    print "    <-- Cleaning triangle cells      [",triangle_cell_end_time - triangle_cell_start_time,"s]"


    # triangle_cell_start_time = time()
    # print "    --> Listing triangle cells"
    # triangle_cell = np.array([polydata_cell_data.GetTuple(t)[0] for t in xrange(polydata.GetNumberOfCells())],np.uint16)
    # triangle_cell_end_time = time()
    # print "    <-- Listing triangle cells     [",triangle_cell_end_time - triangle_cell_start_time,"s]"

    # triangle_cells = {}
    # for t in xrange(polydata.GetNumberOfCells()):
    #     triangle_cells[t] = []

    # for c in considered_cells:
    #     cell_triangles = np.where(triangle_cell == c)[0]
    #     for t in cell_triangles:
    #         triangle_cells[t] += [c]
    #     print "    Cell ",c," : ",cell_triangles.shape[0]," triangles"
    #     neighbor_triangles = where_list(triangle_cell,list(img_graph.neighbors(c)))[0]
    #     neighbor_triangle_matching = vq(polydata_triangles[cell_triangles],polydata_triangles[neighbor_triangles])
    #     cell_double_triangles = neighbor_triangles[neighbor_triangle_matching[0][np.where(neighbor_triangle_matching[1]==0)[0]]]
    #     for t in cell_double_triangles:
    #         triangle_cells[t] += [c]

    # print triangle_cells.values()
    # raw_input()

    # unique_triangles,unique_triangle_rows = array_unique(polydata_triangles,return_index=True)
    # n_triangles = unique_triangles.shape[0]

    # triangle_unique = array_dict(np.arange(n_triangles),unique_triangle_rows)

    # triangle_id = (polydata_triangles * np.array([contour.GetOutput().GetPoints().GetNumberOfPoints(),1,1./contour.GetOutput().GetPoints().GetNumberOfPoints()])).sum(axis=1)
    # unique_triangle_id = (unique_triangles * np.array([contour.GetOutput().GetPoints().GetNumberOfPoints(),1,1./contour.GetOutput().GetPoints().GetNumberOfPoints()])).sum(axis=1)

    # triangle_number = nd.sum(np.ones_like(triangle_id),triangle_id,index=triangle_id)
    # double_triangle_rows = np.where(triangle_number==2)[0]
    # print "    ",double_triangle_rows.shape[0]," double triangles / ",contour.GetOutput().GetNumberOfCells()
    # double_triangles = polydata_triangles[double_triangle_rows]

    # unique_triangle_number = nd.sum(np.ones_like(triangle_id),triangle_id,index=unique_triangle_id)
    # double_unique_triangle_rows = np.where(unique_triangle_number==2)[0]
    # double_unique_triangles = unique_triangles[double_unique_triangle_rows]

    # triangle_triangle_matching = (vq(double_triangles,double_unique_triangles)[0])
    # triangle_triangle_matching = array_dict(double_unique_triangle_rows[triangle_triangle_matching],double_triangle_rows)

    # unique_triangle_cells = {}
    # for t in xrange(n_triangles):
    #     unique_triangle_cells[t] = []
    # for t in xrange(polydata.GetNumberOfCells()):
    #     if triangle_number[t] == 1:
    #         unique_triangle_cells[triangle_unique[t]] += list(polydata_cell_data.GetTuple(t))
    #     elif triangle_number[t] == 2:
    #         unique_triangle_cells[triangle_triangle_matching[t]] += list(polydata_cell_data.GetTuple(t))
    # triangle_cells = {}
    # for t in xrange(polydata.GetNumberOfCells()):
    #     if triangle_number[t] == 1:
    #         triangle_cells[t] = np.array(unique_triangle_cells[triangle_unique[t]],np.uint16)
    #     elif triangle_number[t] == 2:
    #         triangle_cells[t] = np.array(unique_triangle_cells[triangle_triangle_matching[t]],np.uint16)

    cell_data = vtk.vtkFloatArray()
    cell_data.SetNumberOfComponents(2)
    cell_data.SetNumberOfTuples(polydata.GetNumberOfCells())
    for t in xrange(polydata.GetNumberOfCells()):
        triangle_key = tuple(polydata_triangles[t])
        if len(triangle_cells[triangle_key]) == 2:
            cell_data.SetTuple(t,np.sort(triangle_cells[triangle_key]))
        else:
            cell_data.SetTuple(t,np.concatenate([triangle_cells[triangle_key],[1]]))
    polydata.GetCellData().SetScalars(cell_data)

    return triangle_cells
def test_graph_from_image(visual = False):
    im =  imread("segmentation.inr.gz")
    graph = graph_from_image(im)
    if visual :
        Viewer.display(graph2pglscene(graph,graph.vertex_property('barycenter'),graph.vertex_property('L1')))