Пример #1
0
    def __init__(self, ac, eng=None):
        """Initialize FuelFlow object.

        Args:
            ac (string): ICAO aircraft type (for example: A320).
            eng (string): Engine type (for example: CFM56-5A3).
                Leave empty to use the default engine specified
                by in the aircraft database.

        """
        self.aircraft = prop.aircraft(ac)

        if eng is None:
            eng = self.aircraft["engine"]["default"]

        self.engine = prop.engine(eng)

        self.thrust = Thrust(ac, eng)
        self.drag = Drag(ac)

        c3, c2, c1 = (
            self.engine["fuel_c3"],
            self.engine["fuel_c2"],
            self.engine["fuel_c1"],
        )
        # print(c3,c2,c1)

        self.fuel_flow_model = lambda x: c3 * x**3 + c2 * x**2 + c1 * x
Пример #2
0
    def __init__(self, ac):
        super(CruiseOptimizer, self).__init__()

        self.ac = ac
        self.aircraft = prop.aircraft(ac)
        self.thrust = Thrust(ac)
        self.fuelflow = FuelFlow(ac)
        self.drag = Drag(ac)

        # parameters to be optimized:
        #   Mach number, altitude
        self.x0 = np.array([0.3, 25000 * aero.ft])
        self.normfactor = calc_normfactor(self.x0)

        self.bounds = None
        self.update_bounds()
Пример #3
0
def state_update(X, dt, mdl, eng):
    nrow, ncol = X.shape

    m, eta, x, y, z, vax, vay, vz, vwx, vwy, tau = X

    vgx = vax + vwx
    vgy = vay + vwy

    vg = np.sqrt(vgx**2 + vgy**2)
    va = np.sqrt(vax**2 + vay**2)

    psi = np.arctan2(vax, vay)

    gamma = np.arcsin(vz / va)

    thrust = Thrust(mdl, eng)
    T = thrust.climb(va / aero.kts, z / aero.ft, vz / aero.fpm)

    drag = Drag(mdl)
    D = drag.clean(m, va / aero.kts, z / aero.ft)

    a = (eta * T - D) / m - aero.g0 * np.sin(gamma)

    m1 = m
    eta1 = eta

    x1 = x + vgx * dt
    y1 = y + vgy * dt
    z1 = z + vz * dt

    va1 = va + a * dt
    vax1 = va1 * np.sin(psi)
    vay1 = va1 * np.cos(psi)

    vz1 = vz
    vwx1 = vwx
    vwy1 = vwy
    tau1 = aero.temperature(z)

    X = np.array([m1, eta1, x1, y1, z1, vax1, vay1, vz1, vwx1, vwy1, tau1])

    return X
Пример #4
0
class CruiseOptimizer(object):
    """Optimizer for cursie mach number and altitude."""
    def __init__(self, ac):
        super(CruiseOptimizer, self).__init__()

        self.ac = ac
        self.aircraft = prop.aircraft(ac)
        self.thrust = Thrust(ac)
        self.fuelflow = FuelFlow(ac)
        self.drag = Drag(ac)

        # parameters to be optimized:
        #   Mach number, altitude
        self.x0 = np.array([0.3, 25000 * aero.ft])
        self.normfactor = calc_normfactor(self.x0)

        self.bounds = None
        self.update_bounds()

    def update_bounds(self, **kwargs):
        machmin = kwargs.get('machmin', 0.5)
        machmax = kwargs.get('machmax', self.aircraft['limits']['MMO'])
        hmin = kwargs.get('hmin', 25000 * aero.ft)
        hmax = kwargs.get('hmax', self.aircraft['limits']['ceiling'])

        self.bounds = np.array([[machmin, machmax], [hmin, hmax]
                                ]) * self.normfactor.reshape(2, -1)

    def func_fuel(self, x, mass):
        mach, h = denormalize(x, self.normfactor)
        va = aero.mach2tas(mach, h)
        ff = self.fuelflow.enroute(mass, va / aero.kts, h / aero.ft)
        ff_m = ff / (va + 1e-3) * 1000
        # print("%.03f" % mach, "%d" % (h/aero.ft), "%.05f" % ff_m)
        return ff_m

    def func_time(self, x, mass):
        mach, h = denormalize(x, self.normfactor)
        va = aero.mach2tas(mach, h)
        va_inv = 1 / (va + 1e-4) * 1000
        # print("%.03f" % mach, "%d" % (h/aero.ft), "%.02f" % va)
        return va_inv

    def func_cons_lift(self, x, mass):
        mach, h = denormalize(x, self.normfactor)
        va = aero.mach2tas(mach, h)

        Tmax = self.thrust.cruise(va / aero.kts, h / aero.ft)

        qS = 0.5 * aero.density(h) * va**2 * self.aircraft['wing']['area']
        cd0 = self.drag.polar['clean']['cd0']
        k = self.drag.polar['clean']['k']

        mach_crit = self.drag.polar['mach_crit']
        if mach > mach_crit:
            cd0 += 20 * (mach - mach_crit)**4

        dL2 = qS**2 * (1 / k * (Tmax /
                                (qS + 1e-3) - cd0)) - (mass * aero.g0)**2
        return dL2

    def func_cons_thrust(self, x, mass):
        mach, h = denormalize(x, self.normfactor)
        va = aero.mach2tas(mach, h)

        D = self.drag.clean(mass, va / aero.kts, h / aero.ft)
        Tmax = self.thrust.cruise(va / aero.kts, h / aero.ft)

        dT = Tmax - D
        return dT

    def optimize(self, goal, mass):
        if goal == 'fuel':
            func = self.func_fuel
        elif goal == 'time':
            func = self.func_time
        else:
            raise RuntimeError('Optimization goal [%s] not avaiable.' % goal)

        x0 = self.x0 * self.normfactor
        res = minimize(
            func,
            x0,
            args=(mass, ),
            bounds=self.bounds,
            jac=lambda x, m: Jacobian(lambda x: func(x, m))(x),
            options={'maxiter': 200},
            constraints=(
                {
                    'type':
                    'ineq',
                    'args': (mass, ),
                    'fun':
                    lambda x, m: self.func_cons_thrust(x, m),
                    'jac':
                    lambda x, m: Jacobian(lambda x: self.func_cons_thrust(
                        x, m))(x)
                },
                {
                    'type':
                    'ineq',
                    'args': (mass, ),
                    'fun':
                    lambda x, m: self.func_cons_lift(x, m),
                    'jac':
                    lambda x, m: Jacobian(lambda x: self.func_cons_lift(x, m))
                    (x)
                },
            ))
        return res
Пример #5
0
class FuelFlow(object):
    """Fuel flow model based on ICAO emmision databank."""
    def __init__(self, ac, eng=None):
        """Initialize FuelFlow object.

        Args:
            ac (string): ICAO aircraft type (for example: A320).
            eng (string): Engine type (for example: CFM56-5A3).
                Leave empty to use the default engine specified
                by in the aircraft database.

        """
        self.aircraft = prop.aircraft(ac)

        if eng is None:
            eng = self.aircraft["engine"]["default"]

        self.engine = prop.engine(eng)

        self.thrust = Thrust(ac, eng)
        self.drag = Drag(ac)

        c3, c2, c1 = (
            self.engine["fuel_c3"],
            self.engine["fuel_c2"],
            self.engine["fuel_c1"],
        )
        # print(c3,c2,c1)

        self.fuel_flow_model = lambda x: c3 * x**3 + c2 * x**2 + c1 * x

    @ndarrayconvert
    def at_thrust(self, acthr, alt=0):
        """Compute the fuel flow at a given total thrust.

        Args:
            acthr (int or ndarray): The total net thrust of the aircraft (unit: N).
            alt (int or ndarray): Aircraft altitude (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        n_eng = self.aircraft["engine"]["number"]
        engthr = acthr / n_eng

        ratio = engthr / self.engine["max_thrust"]

        ff_sl = self.fuel_flow_model(ratio)
        ff_corr_alt = self.engine["fuel_ch"] * (engthr / 1000) * (alt *
                                                                  aero.ft)
        ff_eng = ff_sl + ff_corr_alt

        fuelflow = ff_eng * n_eng

        return fuelflow

    @ndarrayconvert
    def takeoff(self, tas, alt=None, throttle=1):
        """Compute the fuel flow at takeoff.

        The net thrust is first estimated based on the maximum thrust model
        and throttle setting. Then FuelFlow.at_thrust() is called to compted
        the thrust.

        Args:
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Altitude of airport (unit: ft). Defaults to sea-level.
            throttle (float or ndarray): The throttle setting, between 0 and 1.
                Defaults to 1, which is at full thrust.

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        Tmax = self.thrust.takeoff(tas=tas, alt=alt)
        fuelflow = throttle * self.at_thrust(Tmax)
        return fuelflow

    @ndarrayconvert
    def enroute(self, mass, tas, alt, path_angle=0):
        """Compute the fuel flow during climb, cruise, or descent.

        The net thrust is first estimated based on the dynamic equation.
        Then FuelFlow.at_thrust() is called to compted the thrust. Assuming
        no flap deflection and no landing gear extended.

        Args:
            mass (int or ndarray): Aircraft mass (unit: kg).
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Aircraft altitude (unit: ft).
            path_angle (float or ndarray): Flight path angle (unit: degrees).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        D = self.drag.clean(mass=mass, tas=tas, alt=alt, path_angle=path_angle)

        # Convert angles from degrees to radians.
        gamma = np.radians(path_angle)

        T = D + mass * aero.g0 * np.sin(gamma)
        T_idle = self.thrust.descent_idle(tas=tas, alt=alt)
        T = np.where(T < 0, T_idle, T)

        fuelflow = self.at_thrust(T, alt)

        # do not return value outside performance boundary, with a margin of 20%
        T_max = self.thrust.climb(tas=0, alt=alt, roc=0)
        fuelflow = np.where(T > 1.20 * T_max, np.nan, fuelflow)

        return fuelflow

    def plot_model(self, plot=True):
        """Plot the engine fuel model, or return the pyplot object.

        Args:
            plot (bool): Display the plot or return an object.

        Returns:
            None or pyplot object.

        """
        import matplotlib.pyplot as plt

        xx = np.linspace(0, 1, 50)
        yy = self.fuel_flow_model(xx)
        # plt.scatter(self.x, self.y, color='k')
        plt.plot(xx, yy, "--", color="gray")
        if plot:
            plt.show()
        else:
            return plt
Пример #6
0
    def __init__(self, **kwargs):
        self.ac = kwargs.get('ac')
        self.eng = kwargs.get('eng')
        self.time = kwargs.get('time')
        self.Y = kwargs.get('obs')

        # slightly increase the cov matrix (factor of 0.2), for better convergency
        self.noise = kwargs.get('noise')
        self.stdn = stdns[self.noise] * 1.2

        self.R = np.zeros((nY, nY))
        np.fill_diagonal(self.R, self.stdn**2)

        self.thrust = Thrust(self.ac, self.eng)
        self.drag = Drag(self.ac)

        aircraft = prop.aircraft(self.ac)
        self.mmin = aircraft['limits']['OEW']
        self.mmax = aircraft['limits']['MTOW']
        self.mrange = (self.mmin, self.mmax)

        self.eta_min = kwargs.get('eta_min', 0.80)
        self.eta_max = kwargs.get('eta_max', 1)

        self.kstd_m = kpm * (self.mmax - self.mmin)
        self.kstd_eta = kpe * (1 - self.eta_min)

        self.X = None
        self.nP = None
        self.now = 0
        self.neff = None
        self.X_true = None

        logfn = kwargs.get('logfn', None)

        self.xlabels = [
            'm (kg)', '$\eta$ (-)', 'x (m)', 'y (m)', 'z (m)',
            '$v_{ax}$ (m/s)', '$v_{ay}$ (m/s)', '$v_z$ (m/s)',
            '$v_{wx}$ (m/s)', '$v_{wy}$ (m/s)', '$\\tau$ (K)'
        ]

        self.ylabels = [
            'x', 'y', 'z', '$v_{gx}$', '$v_{gy}$', '$v_z$', '$v_{wx}$',
            '$v_{wy}$', '$\\tau$'
        ]

        if (logfn is not None):
            if ('.log' not in logfn):
                raise RuntimeError('Log file must end with .log')

            self.log = root + '/smclog/' + logfn
            print('writing to log:', self.log)

            header = ['time'] + self.ylabels \
                    + [l+" avg" for l in self.xlabels] \
                    + [l+" med" for l in self.xlabels] \
                    + [l+" min" for l in self.xlabels] \
                    + [l+" max" for l in self.xlabels]

            with open(self.log, 'wt') as fcsv:
                writer = csv.writer(fcsv, delimiter=',')
                writer.writerow(header)

        else:
            self.log = None
Пример #7
0
class SIR():
    def __init__(self, **kwargs):
        self.ac = kwargs.get('ac')
        self.eng = kwargs.get('eng')
        self.time = kwargs.get('time')
        self.Y = kwargs.get('obs')

        # slightly increase the cov matrix (factor of 0.2), for better convergency
        self.noise = kwargs.get('noise')
        self.stdn = stdns[self.noise] * 1.2

        self.R = np.zeros((nY, nY))
        np.fill_diagonal(self.R, self.stdn**2)

        self.thrust = Thrust(self.ac, self.eng)
        self.drag = Drag(self.ac)

        aircraft = prop.aircraft(self.ac)
        self.mmin = aircraft['limits']['OEW']
        self.mmax = aircraft['limits']['MTOW']
        self.mrange = (self.mmin, self.mmax)

        self.eta_min = kwargs.get('eta_min', 0.80)
        self.eta_max = kwargs.get('eta_max', 1)

        self.kstd_m = kpm * (self.mmax - self.mmin)
        self.kstd_eta = kpe * (1 - self.eta_min)

        self.X = None
        self.nP = None
        self.now = 0
        self.neff = None
        self.X_true = None

        logfn = kwargs.get('logfn', None)

        self.xlabels = [
            'm (kg)', '$\eta$ (-)', 'x (m)', 'y (m)', 'z (m)',
            '$v_{ax}$ (m/s)', '$v_{ay}$ (m/s)', '$v_z$ (m/s)',
            '$v_{wx}$ (m/s)', '$v_{wy}$ (m/s)', '$\\tau$ (K)'
        ]

        self.ylabels = [
            'x', 'y', 'z', '$v_{gx}$', '$v_{gy}$', '$v_z$', '$v_{wx}$',
            '$v_{wy}$', '$\\tau$'
        ]

        if (logfn is not None):
            if ('.log' not in logfn):
                raise RuntimeError('Log file must end with .log')

            self.log = root + '/smclog/' + logfn
            print('writing to log:', self.log)

            header = ['time'] + self.ylabels \
                    + [l+" avg" for l in self.xlabels] \
                    + [l+" med" for l in self.xlabels] \
                    + [l+" min" for l in self.xlabels] \
                    + [l+" max" for l in self.xlabels]

            with open(self.log, 'wt') as fcsv:
                writer = csv.writer(fcsv, delimiter=',')
                writer.writerow(header)

        else:
            self.log = None

    def state_update(self, X, dt):
        nrow, ncol = X.shape

        m, eta, x, y, z, vax, vay, vz, vwx, vwy, tau = np.split(
            X, X.shape[1], 1)

        vgx = vax + vwx
        vgy = vay + vwy

        vg = np.sqrt(vgx**2 + vgy**2)
        va = np.sqrt(vax**2 + vay**2)

        psi = np.arctan2(vax, vay)

        gamma = np.arcsin(vz / va)

        T = self.thrust.climb(va / aero.kts, z / aero.ft, vz / aero.fpm)
        D = self.drag.clean(m, va / aero.kts, z / aero.ft)

        a = (eta * T - D) / m - aero.g0 * np.sin(gamma)
        print(np.mean(a))

        m1 = m
        eta1 = eta

        x1 = x + vgx * dt
        y1 = y + vgy * dt
        z1 = z + vz * dt

        va1 = va + a * dt
        # va1 = va + a * np.cos(gamma) * dt
        vax1 = va1 * np.sin(psi)
        vay1 = va1 * np.cos(psi)

        evz = np.random.normal(0, sigma_vz, nrow)
        vz1 = alpha_vz * vz + evz.reshape(-1, 1) * dt
        # vz1 = alpha_vz * vz + a * np.sin(gamma) * dt + evz.reshape(-1, 1) * dt

        evwx = np.random.normal(0, sigma_vwx, nrow)
        vwx1 = alpha_vwx * vwx + evwx.reshape(-1, 1) * dt

        evwy = np.random.normal(0, sigma_vwy, nrow)
        vwy1 = alpha_vwy * vwy + evwy.reshape(-1, 1) * dt

        etau = np.random.normal(0, sigma_tau, nrow)
        tau1 = alpha_tau * tau + etau.reshape(-1, 1) * dt

        X = np.hstack(
            [m1, eta1, x1, y1, z1, vax1, vay1, vz1, vwx1, vwy1, tau1])

        return X

    def logsm(self):
        if self.log is None:
            return

        t = self.now

        if t in self.time:
            idx = list(self.time).index(t)
            measurement = self.Y[:, idx]
        else:
            measurement = np.ones(self.Y.shape[0]) * np.nan

        state_avgs = np.average(self.X, weights=self.W.T, axis=0)
        state_meds = np.median(self.X, axis=0)
        # state_mins = np.percentile(self.X, 2.5, axis=0)
        # state_maxs = np.percentile(self.X, 95.5, axis=0)
        state_mins = np.min(self.X, axis=0)
        state_maxs = np.max(self.X, axis=0)

        row = np.hstack([[t], measurement, state_avgs, state_meds, state_mins,
                         state_maxs])

        with open(self.log, 'at') as fcsv:
            writer = csv.writer(fcsv, delimiter=',')
            writer.writerow(row)

    def compute_neff(self):
        self.neff = 1 / np.sum(np.square(self.W))

    def printstates(self, t):
        # ---- Debug ----
        obsv = Y2X(self.Y[:, t])
        obsv[0:2] = ['*****', '****']
        avgs = np.average(self.X, weights=self.W, axis=0)
        meds = np.median(self.X, axis=0)
        # mins = np.percentile(self.X, 2.5, axis=0)
        # maxs = np.percentile(self.X, 95.5, axis=0)
        mins = np.min(self.X, axis=0)
        maxs = np.max(self.X, axis=0)

        printarray(obsv, 'obsv')
        printarray(avgs, 'avgs')
        # printarray(meds, 'meds')
        printarray(mins, 'mins')
        printarray(maxs, 'maxs')

    def pickle_particles(self, fname):
        import os, pickle
        root = os.path.dirname(os.path.realpath(__file__))
        fpkl = open(root + '/data/' + fname, 'wb')
        pickle.dump({'X': self.X, 'W': self.W}, fpkl)

    def init_particles(self, at=0, n_particles=50000):
        Mu0 = Y2X(self.Y[:, at])
        Mu0[0:2] = [0, 0]

        Var0 = np.zeros((nX, nX))
        np.fill_diagonal(Var0, (np.append([0, 0], self.stdn))**2)

        printarray(Mu0, 'Mu0')
        printarray(np.diag(Var0), 'Var0')

        self.X = np.random.multivariate_normal(Mu0, Var0, n_particles)
        self.nP = n_particles

        m_inits = np.random.uniform(self.mmin, self.mmax, n_particles)

        # mass-related initialization (recommended)
        er_mins = 1 - (1 - self.eta_min) * (self.mmax - m_inits) / (self.mmax -
                                                                    self.mmin)
        eta_inits = np.random.uniform(er_mins, self.eta_max, n_particles)

        # # Uniform initialization
        # eta_inits = np.random.uniform(self.eta_min, self.eta_max, n_particles)

        self.X[:, 0] = m_inits
        self.X[:, 1] = eta_inits

        self.W = np.ones(n_particles) / (n_particles)
        return

    def resample(self):
        """
        References: J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic
           systems. Journal of the American Statistical Association,
           93(443):1032–1044, 1998.
        """
        N = self.nP
        W = self.W
        idx = np.zeros(N, 'i')

        # take int(N*w) copies of each weight, which ensures particles with the
        # same weight are drawn uniformly
        copyn = (np.floor(N * W)).astype(int)

        a = np.where(copyn > 0)[0]
        b = copyn[a]
        c = np.append(0, np.cumsum(b))
        for i, (i0, i1) in enumerate(zip(c[:-1], c[1:])):
            idx[i0:i1] = a[i]

        # use multinormal resample on the residual to fill up the rest. This
        # maximizes the variance of the samples
        k = c[-1]
        residual = W - copyn
        residual /= sum(residual)
        cumulative_sum = np.cumsum(residual)
        cumulative_sum[
            -1] = 1.  # avoid round-off errors: ensures sum is exactly one
        idx[k:N] = np.searchsorted(cumulative_sum, np.random.random(N - k))
        return idx

    def run(self, processdt=1, use_bada=True):
        if self.X is None:
            raise RuntimeError(
                'Particles not initialized. Run SIR.init_particles() first.')

        self.now = self.time[0]
        self.logsm()

        for it, tm in enumerate(self.time):
            print('-' * 100)
            self.now = tm

            # ===== SIR update =====
            print("SIR / measurement update, time", self.now)
            self.printstates(it)

            # ---- weight update ----
            Y_true = X2Y(self.X)
            Yt = self.Y[:, it]
            Y = np.ones(Y_true.shape) * Yt
            DY = Y - Y_true
            Simga_inv = np.linalg.inv(self.R)
            self.W *= np.exp(-0.5 *
                             np.einsum('ij,ij->i', np.dot(DY, Simga_inv), DY))

            self.W = np.where(self.X[:, 1] < self.eta_min, 0, self.W)
            self.W = np.where(self.X[:, 1] > self.eta_max, 0, self.W)
            self.W = np.where(self.X[:, 0] < self.mmin, 0, self.W)
            self.W = np.where(self.X[:, 0] > self.mmax, 0, self.W)

            self.W = self.W / np.sum(self.W)  # normalize

            # ---- resample ----
            idx = self.resample()
            self.X = self.X[idx, :]
            self.W = np.ones(self.nP) / self.nP

            if tm == self.time[-1]:
                break

            # ---- apply kernel ----
            print((bcolors.OKGREEN + "Kernel applied: [m:%d, eta:%f]" +
                   bcolors.ENDC) % (self.kstd_m, self.kstd_eta))
            self.X[:, 0] = self.X[:, 0] + np.random.normal(
                0, self.kstd_m, self.nP)
            self.X[:, 1] = self.X[:, 1] + np.random.normal(
                0, self.kstd_eta, self.nP)

            epsi = np.random.normal(0, kpsi, self.nP)
            va = np.sqrt(self.X[:, 5]**2 + self.X[:, 6]**2)
            psi = np.arctan2(self.X[:, 5], self.X[:, 6])

            self.X[:, 5] = va * np.sin(psi + epsi)
            self.X[:, 6] = va * np.cos(psi + epsi)

            # ===== states evolution =====
            dtm = self.time[it + 1] - self.time[it]
            dtp = min(processdt, dtm)  # process update time interval

            for j in range(int(dtm / dtp)):  # number of process update
                print("process update / state evolution, time", self.now)
                self.now = tm + (j + 1) * dtp
                self.X = self.state_update(self.X, dtp)
                self.logsm()

        return
Пример #8
0
class FuelFlow(object):
    """Fuel flow model based on ICAO emmision databank."""
    def __init__(self, ac, eng=None):
        """Initialize FuelFlow object.

        Args:
            ac (string): ICAO aircraft type (for example: A320).
            eng (string): Engine type (for example: CFM56-5A3).
                Leave empty to use the default engine specified
                by in the aircraft database.

        """
        self.aircraft = prop.aircraft(ac)

        if eng is None:
            eng = self.aircraft['engine']['default']

        self.engine = prop.engine(eng)

        self.thrust = Thrust(ac, eng)
        self.drag = Drag(ac)

        c3, c2, c1 = self.engine['fuel_c3'], self.engine[
            'fuel_c2'], self.engine['fuel_c1']
        # print(c3,c2,c1)

        self.fuel_flow_model = lambda x: c3 * x**3 + c2 * x**2 + c1 * x

    @ndarrayconvert
    def at_thrust(self, acthr, alt=0):
        """Compute the fuel flow at a given total thrust.

        Args:
            acthr (int or ndarray): The total net thrust of the aircraft (unit: N).
            alt (int or ndarray): Aicraft altitude (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        ratio = acthr / (self.engine['max_thrust'] *
                         self.aircraft['engine']['number'])
        fuelflow = self.fuel_flow_model(ratio) * self.aircraft['engine']['number'] \
            + self.engine['fuel_ch'] * (alt*aero.ft) * (acthr/1000)
        return fuelflow

    @ndarrayconvert
    def takeoff(self, tas, alt=None, throttle=1):
        """Compute the fuel flow at takeoff.

        The net thrust is first estimated based on the maximum thrust model
        and throttle setting. Then FuelFlow.at_thrust() is called to compted
        the thrust.

        Args:
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Altitude of airport (unit: ft). Defaults to sea-level.
            throttle (float or ndarray): The throttle setting, between 0 and 1.
                Defaults to 1, which is at full thrust.

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        Tmax = self.thrust.takeoff(tas=tas, alt=alt)
        fuelflow = throttle * self.at_thrust(Tmax)
        return fuelflow

    @ndarrayconvert
    def enroute(self, mass, tas, alt, path_angle=0):
        """Compute the fuel flow during climb, cruise, or descent.

        The net thrust is first estimated based on the dynamic equation.
        Then FuelFlow.at_thrust() is called to compted the thrust. Assuming
        no flap deflection and no landing gear extended.

        Args:
            mass (int or ndarray): Aircraft mass (unit: kg).
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Aircraft altitude (unit: ft).
            path_angle (float or ndarray): Flight path angle (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        D = self.drag.clean(mass=mass, tas=tas, alt=alt, path_angle=path_angle)

        gamma = np.radians(path_angle)

        T = D + mass * aero.g0 * np.sin(gamma)
        T_idle = self.thrust.descent_idle(tas=tas, alt=alt)
        T = np.where(T < 0, T_idle, T)

        fuelflow = self.at_thrust(T, alt)

        return fuelflow

    def plot_model(self, plot=True):
        """Plot the engine fuel model, or return the pyplot object.

        Args:
            plot (bool): Display the plot or return an object.

        Returns:
            None or pyplot object.

        """
        import matplotlib.pyplot as plt
        xx = np.linspace(0, 1, 50)
        yy = self.fuel_flow_model(xx)
        # plt.scatter(self.x, self.y, color='k')
        plt.plot(xx, yy, '--', color='gray')
        if plot:
            plt.show()
        else:
            return plt
Пример #9
0
    def test_drag(self):
        n = 10
        p = om.Problem()
        tas_kt = np.linspace(0, 100, n) * 1.94384
        mass = 200000
        flap_angle = 10
        path_angle = 0
        alt = 0

        ivc = p.model.add_subsystem('ivc',
                                    subsys=om.IndepVarComp(),
                                    promotes_outputs=['*'])
        ivc.add_output(name='tas', val=tas_kt, units='kn')
        ivc.add_output(name='mass', val=mass, units='kg')
        ivc.add_output(name='flap_angle', val=flap_angle, units='deg')
        ivc.add_output(name='alt', val=alt, units='m')
        ivc.add_output(name='grav', val=9.80665, units='m/s**2')

        p.model.add_subsystem('atmos', subsys=USatm1976Comp(num_nodes=1))

        p.model.add_subsystem(
            'cl_comp',
            subsys=om.ExecComp(
                'CL=(mass * grav * np.cos(flight_path))/(qbar * S)',
                mass={
                    'value': 0.0,
                    'units': 'kg'
                },
                grav={
                    'value': 0.0,
                    'units': 'm/s**2'
                },
                flight_path={
                    'value': 0.0,
                    'units': 'rad'
                },
                qbar={
                    'value': np.repeat(0.0, n),
                    'units': 'Pa'
                },
                S={
                    'value': 0.0,
                    'units': 'm**2'
                },
                cl={
                    'value': np.repeat(0.0, n),
                    'units': 'None'
                }))
        p.model.add_subsystem('aero',
                              subsys=AerodynamicsGroup(num_nodes=n,
                                                       airplane_data=b747))

        p.model.connect('tas', 'aero.tas')
        p.model.connect('alt', 'atmos.h')
        p.model.connect('atmos.rho', 'aero.rho')
        p.model.connect('flap_angle', 'aero.flap_angle')
        p.model.connect('aero.qbar', 'cl_comp.qbar')
        p.model.connect('mass', ['aero.mass', 'cl_comp.mass'])
        p.model.connect('grav', ['aero.grav', 'cl_comp.grav'])
        p.model.connect('aero.coeff_comp.CL', 'cl_comp.CL')
        p.model.connect('cl_comp.CL', 'aero.coeff_comp.CL')
        p.setup()

        p.set_val('cl_comp.S', b747.wing.area)
        p.set_val('cl_comp.flight_path', path_angle)
        p.run_model()

        print(p.get_val('aero.D'))
        drag = Drag(ac='B744')
        reference_drag = [
            drag.nonclean(mass=mass,
                          tas=v,
                          alt=alt,
                          flap_angle=flap_angle,
                          path_angle=path_angle,
                          landing_gear=True) for v in tas_kt
        ]
        print(reference_drag)
        assert_near_equal(p.get_val('aero.D'), reference_drag)
Пример #10
0
from openap import Drag

drag = Drag(ac='A320')

print('-'*70)

D = drag.clean(mass=60000, tas=200, alt=20000)
print("drag.clean(mass=60000, tas=200, alt=20000)")
print(D)
print('-'*70)

D = drag.clean(mass=60000, tas=250, alt=20000)
print("drag.clean(mass=60000, tas=250, alt=20000)")
print(D)
print('-'*70)

D = drag.nonclean(mass=60000, tas=150, alt=1000, flap_angle=20, path_angle=10, landing_gear=False)
print("drag.nonclean(mass=60000, tas=150, alt=1000, flap_angle=20, path_angle=10, landing_gear=False)")
print(D)
print('-'*70)

D = drag.nonclean(mass=60000, tas=150, alt=200, flap_angle=20, path_angle=10, landing_gear=True)
print("drag.nonclean(mass=60000, tas=150, alt=1000, flap_angle=20, path_angle=10, landing_gear=True)")
print(D)
print('-'*70)


D = drag.clean(mass=[60000], tas=[200], alt=[20000])
print("drag.clean(mass=[60000], tas=[200], alt=[20000])")
print(D)
print('-'*70)