Пример #1
0
	def detect_lines(self, img_grey, img_orig):
		""" Detect lines within the image. To switch between standard and
			probabilistic Hough transform, use cv.CV_HOUGH_STANDARD, or
			cv.CV_HOUGH_PROBABILISTIC.
		"""
		# Set transform method ('standard','probabilistic')
		transform_method						= 'probabilistic'

		# Clear out our storage
		cv.cvClearMemStorage(self.lines_storage)
		sz										= cv.cvSize(img_grey.width & -2, img_grey.height & -2)
		img_dst_color							= cv.cvCreateImage(cv.cvGetSize(img_orig), 8, 3)
		tgrey									= cv.cvCreateImage(sz, 8, 1)

		cv.cvCanny(tgrey, img_grey, 50, 200, 3)
		if transform_method == 'standard':
			lines								= cv.cvHoughLines2(img_grey,
																	self.lines_storage,
																	cv.CV_HOUGH_STANDARD,
																	1,
																	cv.CV_PI/180,
																	100,
																	0,
																	0)
		else:
			lines								= cv.cvHoughLines2(img_grey,
																	self.lines_storage,
																	cv.CV_HOUGH_PROBABILISTIC,
																	1,
																	cv.CV_PI/180,
																	50,
																	50,
																	10)

		return lines
Пример #2
0
    def detect_lines(self, img_grey, img_orig):
        """ Detect lines within the image. To switch between standard and
			probabilistic Hough transform, use cv.CV_HOUGH_STANDARD, or
			cv.CV_HOUGH_PROBABILISTIC.
		"""
        # Set transform method ('standard','probabilistic')
        transform_method = 'probabilistic'

        # Clear out our storage
        cv.cvClearMemStorage(self.lines_storage)
        sz = cv.cvSize(img_grey.width & -2, img_grey.height & -2)
        img_dst_color = cv.cvCreateImage(cv.cvGetSize(img_orig), 8, 3)
        tgrey = cv.cvCreateImage(sz, 8, 1)

        cv.cvCanny(tgrey, img_grey, 50, 200, 3)
        if transform_method == 'standard':
            lines = cv.cvHoughLines2(img_grey, self.lines_storage,
                                     cv.CV_HOUGH_STANDARD, 1, cv.CV_PI / 180,
                                     100, 0, 0)
        else:
            lines = cv.cvHoughLines2(img_grey, self.lines_storage,
                                     cv.CV_HOUGH_PROBABILISTIC, 1,
                                     cv.CV_PI / 180, 50, 50, 10)

        return lines
Пример #3
0
def findEdges(original, out, threshold1 = 100, threshold2 = None):
	"""Return a new edge detected image with a specified threshold"""
	warnings.warn("Use findBWEdges instead unless you really need colored edges.", DeprecationWarning)

	#Define threshold2
	if threshold2 == None:
		threshold2 = threshold1 * 3

	# Create two pictures with only one channel for a b/w copy
	# and one for storring the edges found in the b/w picture
	gray = cv.cvCreateImage(cv.cvGetSize(original), 8, 1)
	edge = cv.cvCreateImage(cv.cvGetSize(original), 8, 1)

	# Create the b/w copy of the original
	cv.cvCvtColor(original, gray, cv.CV_BGR2GRAY)

	# Blur the b/w copy, but put the result into edge pic
	cv.cvSmooth(gray, edge, cv.CV_BLUR, 3, 3, 0)

	# Negate the b/w copy of original with newly blurred
	# b/w copy. This will make egdes stand out
	cv.cvNot(gray, edge)

	# Run an edge-finding algorithm called 'Canny'
	# It will analyse the first argument and store the
	# resulting picture in the second argument
	cv.cvCanny(gray, edge, threshold1, threshold2)

	# We initialize our out-image to black
	cv.cvSetZero(out)

	# Finally, we use the found edges, which are b/w, as
	# a mask for copying the colored edges from the original
	# to the out-image
	cv.cvCopy(original, out, edge)
Пример #4
0
def on_trackbar (position):

    cv.cvSmooth (gray, edge, cv.CV_BLUR, 3, 3, 0)
    cv.cvNot (gray, edge)

    # run the edge dector on gray scale
    cv.cvCanny (gray, edge, position, position * 3, 3)

    # reset
    cv.cvSetZero (col_edge)

    # copy edge points
    cv.cvCopy (image, col_edge, edge)
    
    # show the image
    highgui.cvShowImage (win_name, col_edge)
Пример #5
0
def on_trackbar(position):

    cv.cvSmooth(gray, edge, cv.CV_BLUR, 3, 3, 0)
    cv.cvNot(gray, edge)

    # run the edge dector on gray scale
    cv.cvCanny(gray, edge, position, position * 3, 3)

    # reset
    cv.cvSetZero(col_edge)

    # copy edge points
    cv.cvCopy(image, col_edge, edge)

    # show the image
    highgui.cvShowImage(win_name, col_edge)
Пример #6
0
def on_trackbar (position):
    #下面两句应该是没什么用的
    cv.cvSmooth (gray, edge, cv.CV_BLUR, 3, 3, 0)    #图像平滑
    cv.cvNot (gray, edge)     #计算数组元素的按位取反
 
    # run the edge dector on gray scale
    cv.cvCanny (gray, edge, position, position * 3, 3)   #采用 Canny 算法做边缘检测
 
    # reset
    cv.cvSetZero (col_edge)   #清空数组
 
    # copy edge points
    cv.cvCopy (image, col_edge, edge)   #参数edge影响拷贝的结果
 
    # show the image
    highgui.cvShowImage (win_name, col_edge)
Пример #7
0
def findBWEdges(original, out, threshold1, threshold2):
	"""Identical with findEdges except that this returns white edges
	on a black background. We really don't need colored edges any longer.
	This also makes it easy to to a manual merge of edge and blur picture."""
	if threshold2 == None:
		threshold2 = threshold1 * 3

	gray = cv.cvCreateImage(cv.cvGetSize(original), 8, 1)

	cv.cvCvtColor(original, gray, cv.CV_BGR2GRAY)

	cv.cvSmooth(gray, out, cv.CV_BLUR, 3, 3, 0)

	cv.cvNot(gray, out)

	cv.cvCanny(gray, out, threshold1, threshold2)

	return out
Пример #8
0
	def detect_squares(self, img_grey, img_orig):
		""" Find squares within the video stream and draw them """
		cv.cvClearMemStorage(self.faces_storage)
		N										= 11
		thresh									= 5
		sz										= cv.cvSize(img_grey.width & -2, img_grey.height & -2)
		timg									= cv.cvCloneImage(img_orig)
		pyr										= cv.cvCreateImage(cv.cvSize(sz.width/2, sz.height/2), 8, 3)
		# create empty sequence that will contain points -
		# 4 points per square (the square's vertices)
		squares									= cv.cvCreateSeq(0, cv.sizeof_CvSeq, cv.sizeof_CvPoint, self.squares_storage)
		squares									= cv.CvSeq_CvPoint.cast(squares)

		# select the maximum ROI in the image
		# with the width and height divisible by 2
		subimage								= cv.cvGetSubRect(timg, cv.cvRect(0, 0, sz.width, sz.height))

		cv.cvReleaseImage(timg)

		# down-scale and upscale the image to filter out the noise
		cv.cvPyrDown(subimage, pyr, 7)
		cv.cvPyrUp(pyr, subimage, 7)
		cv.cvReleaseImage(pyr)
		tgrey									= cv.cvCreateImage(sz, 8, 1)
		# find squares in every color plane of the image
		for c in range(3):
			# extract the c-th color plane
			channels							= [None, None, None]
			channels[c]							= tgrey
			cv.cvSplit(subimage, channels[0], channels[1], channels[2], None)
			for l in range(N):
				# hack: use Canny instead of zero threshold level.
				# Canny helps to catch squares with gradient shading
				if(l == 0):
					# apply Canny. Take the upper threshold from slider
					# and set the lower to 0 (which forces edges merging)
					cv.cvCanny(tgrey, img_grey, 0, thresh, 5)
					# dilate canny output to remove potential
					# holes between edge segments
					cv.cvDilate(img_grey, img_grey, None, 1)
				else:
					# apply threshold if l!=0:
					#     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
					cv.cvThreshold(tgrey, img_grey, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)

				# find contours and store them all as a list
				count, contours					= cv.cvFindContours(img_grey,
																	self.squares_storage,
																	cv.sizeof_CvContour,
																	cv.CV_RETR_LIST,
																	cv.CV_CHAIN_APPROX_SIMPLE,
																	cv.cvPoint(0,0))

				if not contours:
					continue

				# test each contour
				for contour in contours.hrange():
					# approximate contour with accuracy proportional
					# to the contour perimeter
					result						= cv.cvApproxPoly(contour,
																	cv.sizeof_CvContour,
																	self.squares_storage,
																	cv.CV_POLY_APPROX_DP,
																	cv.cvContourPerimeter(contours)*0.02, 0)
					# square contours should have 4 vertices after approximation
					# relatively large area (to filter out noisy contours)
					# and be convex.
					# Note: absolute value of an area is used because
					# area may be positive or negative - in accordance with the
					# contour orientation
					if(result.total == 4 and abs(cv.cvContourArea(result)) > 1000 and cv.cvCheckContourConvexity(result)):
						s						= 0
						for i in range(5):
							# find minimum angle between joint
							# edges (maximum of cosine)
							if(i >= 2):
								t				= abs(self.squares_angle(result[i], result[i-2], result[i-1]))
								if s<t:
									s			= t
						# if cosines of all angles are small
						# (all angles are ~90 degree) then write quandrange
						# vertices to resultant sequence
						if(s < 0.3):
							for i in range(4):
								squares.append(result[i])

		cv.cvReleaseImage(tgrey)
		return squares
Пример #9
0
highgui.cvMoveWindow ('Image Display Window', 10, 10)

#load image
image = highgui.cvLoadImage(sys.argv[1]);

#create image arrays
grayimage = cv.cvCreateImage(cv.cvGetSize(image), 8, 1)
cannyedges = cv.cvCreateImage(cv.cvGetSize(image), 8, 1)


#convert to grayscale
cv.cvCvtColor(image, grayimage, cv.CV_BGR2GRAY)
#Canny
#Canny(image, edges, threshold1, threshold2, aperture_size=3) = None
#Implements the Canny algorithm for edge detection.
cv.cvCanny(grayimage, cannyedges, 150, 450 , 3)


#This is the line that throws the error
storage = cv.cvCreateMat(50, 1, cv.CV_32FC3)

cv.cvSetZero(storage)

#circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 2, grayimage.height/4, 150, 40, long(sys.argv[2]), long(sys.argv[3]))
#circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 1, grayimage.height, 200, 40, long(sys.argv[2]), long(sys.argv[3]))
circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 1, grayimage.width, 150, 40, long(sys.argv[2]), grayimage.width)

print storage
for i in storage:
    print i[0], i[1], i[2]
    center = cv.cvRound(i[0]), cv.cvRound(i[1])
Пример #10
0
    def detect_squares(self, img):
        """ Find squares within the video stream and draw them """
        N = 11
        thresh = 5
        sz = cv.cvSize(img.width & -2, img.height & -2)
        timg = cv.cvCloneImage(img)
        gray = cv.cvCreateImage(sz, 8, 1)
        pyr = cv.cvCreateImage(cv.cvSize(sz.width / 2, sz.height / 2), 8, 3)
        # create empty sequence that will contain points -
        # 4 points per square (the square's vertices)
        squares = cv.cvCreateSeq(0, cv.sizeof_CvSeq, cv.sizeof_CvPoint,
                                 self.storage)
        squares = cv.CvSeq_CvPoint.cast(squares)

        # select the maximum ROI in the image
        # with the width and height divisible by 2
        subimage = cv.cvGetSubRect(timg, cv.cvRect(0, 0, sz.width, sz.height))

        # down-scale and upscale the image to filter out the noise
        cv.cvPyrDown(subimage, pyr, 7)
        cv.cvPyrUp(pyr, subimage, 7)
        tgray = cv.cvCreateImage(sz, 8, 1)
        # find squares in every color plane of the image
        for c in range(3):
            # extract the c-th color plane
            channels = [None, None, None]
            channels[c] = tgray
            cv.cvSplit(subimage, channels[0], channels[1], channels[2], None)
            for l in range(N):
                # hack: use Canny instead of zero threshold level.
                # Canny helps to catch squares with gradient shading
                if (l == 0):
                    # apply Canny. Take the upper threshold from slider
                    # and set the lower to 0 (which forces edges merging)
                    cv.cvCanny(tgray, gray, 0, thresh, 5)
                    # dilate canny output to remove potential
                    # holes between edge segments
                    cv.cvDilate(gray, gray, None, 1)
                else:
                    # apply threshold if l!=0:
                    #     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                    cv.cvThreshold(tgray, gray, (l + 1) * 255 / N, 255,
                                   cv.CV_THRESH_BINARY)

                # find contours and store them all as a list
                count, contours = cv.cvFindContours(gray, self.storage,
                                                    cv.sizeof_CvContour,
                                                    cv.CV_RETR_LIST,
                                                    cv.CV_CHAIN_APPROX_SIMPLE,
                                                    cv.cvPoint(0, 0))

                if not contours:
                    continue

                # test each contour
                for contour in contours.hrange():
                    # approximate contour with accuracy proportional
                    # to the contour perimeter
                    result = cv.cvApproxPoly(
                        contour, cv.sizeof_CvContour, self.storage,
                        cv.CV_POLY_APPROX_DP,
                        cv.cvContourPerimeter(contours) * 0.02, 0)
                    # square contours should have 4 vertices after approximation
                    # relatively large area (to filter out noisy contours)
                    # and be convex.
                    # Note: absolute value of an area is used because
                    # area may be positive or negative - in accordance with the
                    # contour orientation
                    if (result.total == 4
                            and abs(cv.cvContourArea(result)) > 1000
                            and cv.cvCheckContourConvexity(result)):
                        s = 0
                        for i in range(5):
                            # find minimum angle between joint
                            # edges (maximum of cosine)
                            if (i >= 2):
                                t = abs(
                                    self.squares_angle(result[i],
                                                       result[i - 2],
                                                       result[i - 1]))
                                if s < t:
                                    s = t
                        # if cosines of all angles are small
                        # (all angles are ~90 degree) then write quandrange
                        # vertices to resultant sequence
                        if (s < 0.3):
                            for i in range(4):
                                squares.append(result[i])

        i = 0
        while i < squares.total:
            pt = []
            # read 4 vertices
            pt.append(squares[i])
            pt.append(squares[i + 1])
            pt.append(squares[i + 2])
            pt.append(squares[i + 3])

            # draw the square as a closed polyline
            cv.cvPolyLine(img, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv.CV_AA, 0)
            i += 4

        return img
Пример #11
0
def on_trackbar1(position):
	global pos1 
	global pos2
	global pos3
	global pos4
	global pos5
	global pos6
	global pos7
	global img
	global gray
	global edges
	print
	print position, pos2, pos3, pos4, pos5, pos6, pos7

	temp = cv.cvCloneImage(img)
	gray = cv.cvCreateImage(cv.cvGetSize(temp), 8, 1)	
	edges = cv.cvCreateImage(cv.cvGetSize(temp), 8, 1)
	dst =  cv.cvCreateImage( cv.cvSize(256,256), 8, 3 )
	

	src = cv.cvCloneImage(img)
	src2 = cv.cvCreateImage( cv.cvGetSize(src), 8, 3 );
	cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)

	cv.cvCanny(gray, edges, position, pos2, 3)
	cv.cvSmooth(edges, edges, cv.CV_GAUSSIAN, 9, 9)

	storage = cv.cvCreateMat(50, 1, cv.CV_32FC3)
	cv.cvSetZero(storage)
	try:
		circles = cv.cvHoughCircles(gray, storage, cv.CV_HOUGH_GRADIENT, 1, float(pos3), float(pos2), float(pos4), long(pos5),long(pos6) )
		#print storage
		for i in storage:
			print "Center: ", i[0], i[1], "  Radius: ", i[2]
			center = cv.cvRound(i[0]), cv.cvRound(i[1])
			radius = cv.cvRound(i[2])
			cv.cvCircle(temp, (center), radius, cv.CV_RGB(255, 0, 0), 1, cv.CV_AA, 0 ) 
			cv.cvCircle(edges, (center), radius, cv.CV_RGB(255, 255, 255), 1, cv.CV_AA, 0 ) 
			if radius > 200:
				print "Circle found over 200 Radius"
				center_crop_topleft = (center[0]-(radius - pos7)), (center[1]-(radius - pos7))
				center_crop_bottomright = (center[0]+(radius - pos7)), (center[1]+(radius - pos7))
				print "crop top left:     ", center_crop_topleft
				print "crop bottom right: ", center_crop_bottomright
				center_crop = cv.cvGetSubRect(src, (center_crop_topleft[0], center_crop_topleft[1] , (center_crop_bottomright[0] - center_crop_topleft[0]), (center_crop_bottomright[1] - center_crop_topleft[1])  ))
				#center_crop = cv.cvGetSubRect(src, (50, 50, radius/2, radius/2))
				cvShowImage( "center_crop", center_crop )
				print "center_crop created"
				

				#mark found circle's center with blue point and blue circle of pos 7 radius
				cv.cvCircle(temp ,(center), 2, cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 ) 	
				cv.cvCircle(temp ,(center), (radius - pos7), cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 ) 
				#cvLogPolar(src, dst, (center), 48, CV_INTER_LINEAR	+CV_WARP_FILL_OUTLIERS )
				#this will draw a smaller cirle outlining the center circle				
				#pos7 = int(pos7 /2.5)
				#cv.cvCircle(dst  ,(img_size.width-pos7, 0), 2, cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 )
				#cv.cvLine(dst, (img_size.width-pos7-1, 0), (img_size.width-pos7-1, img_size.height), cv.CV_RGB(0, 0, 255),1,8,0)
				#cvShowImage( "log-polar", dst )
				
				
				#print radius, (radius-pos7)
				
				#cropped = cv.cvCreateImage( (pos7, img_size.height), 8, 3)
				#cropped2 = cv.cvCreateImage( (pos7, img_size.height), 8, 3)
				
				#coin_edge_img = cv.cvGetSubRect(dst, (img_size.width-pos7, 0, pos7 ,img_size.height ))

				#to create the center cropped part of coin
				#img_size = cvGetSize(scr)

				#cvCopy(coin_edge_img, cropped)
				#cvSaveImage("temp.png", cropped)
				#im = Image.open("temp.png").rotate(90)
				#print "pil image size = ", im.size[0], im.size[1]
				#im = im.resize((im.size[0]*2, im.size[1]*2))
				#print "pil image size = ", im.size
				#im.show()
				#im.save("temp2.png")
				cropped2 = highgui.cvLoadImage("temp2.png")
                                #cvShowImage( "cropped", cropped2)

	except:
		print "Exception:", sys.exc_info()[0] 
		print position, pos2, pos3, pos4, pos5, pos6, pos7
		pass

	highgui.cvShowImage("edges", edges)
	#cvShowImage( "log-polar", dst )
	cvShowImage(wname, temp)