def generate_png(orthophoto_file, output_file=None, outsize=None): if output_file is None: base, ext = os.path.splitext(orthophoto_file) output_file = base + '.png' # See if we need to select top three bands bandparam = "" gtif = gdal.Open(orthophoto_file) if gtif.RasterCount > 4: bands = [] for idx in range(1, gtif.RasterCount + 1): bands.append(gtif.GetRasterBand(idx).GetColorInterpretation()) bands = dict(zip(bands, range(1, len(bands) + 1))) try: red = bands.get(gdal.GCI_RedBand) green = bands.get(gdal.GCI_GreenBand) blue = bands.get(gdal.GCI_BlueBand) if red is None or green is None or blue is None: raise Exception("Cannot find bands") bandparam = "-b %s -b %s -b %s -a_nodata 0" % (red, green, blue) except: bandparam = "-b 1 -b 2 -b 3 -a_nodata 0" gtif = None osparam = "" if outsize is not None: osparam = "-outsize %s 0" % outsize system.run( 'gdal_translate -of png "%s" "%s" %s %s ' '--config GDAL_CACHEMAX %s%% ' % (orthophoto_file, output_file, osparam, bandparam, get_max_memory()))
def compute_cutline(orthophoto_file, crop_area_file, destination, max_concurrency=1, tmpdir=None, scale=1): if io.file_exists(orthophoto_file) and io.file_exists(crop_area_file): from opendm.grass_engine import grass log.ODM_DEBUG("Computing cutline") if tmpdir and not io.dir_exists(tmpdir): system.mkdir_p(tmpdir) scale = max(0.0001, min(1, scale)) scaled_orthophoto = None if scale < 1: log.ODM_DEBUG("Scaling orthophoto to %s%% to compute cutline" % (scale * 100)) scaled_orthophoto = os.path.join(tmpdir, os.path.basename(io.related_file_path(orthophoto_file, postfix=".scaled"))) # Scale orthophoto before computing cutline system.run("gdal_translate -outsize {}% 0 " "-co NUM_THREADS={} " "--config GDAL_CACHEMAX {}% " "{} {}".format( scale * 100, max_concurrency, concurrency.get_max_memory(), orthophoto_file, scaled_orthophoto )) orthophoto_file = scaled_orthophoto try: ortho_width,ortho_height = get_image_size.get_image_size(orthophoto_file, fallback_on_error=False) log.ODM_DEBUG("Orthophoto dimensions are %sx%s" % (ortho_width, ortho_height)) number_lines = int(max(8, math.ceil(min(ortho_width, ortho_height) / 256.0))) except: log.ODM_DEBUG("Cannot compute orthophoto dimensions, setting arbitrary number of lines.") number_lines = 32 log.ODM_DEBUG("Number of lines: %s" % number_lines) gctx = grass.create_context({'auto_cleanup' : False, 'tmpdir': tmpdir}) gctx.add_param('orthophoto_file', orthophoto_file) gctx.add_param('crop_area_file', crop_area_file) gctx.add_param('number_lines', number_lines) gctx.add_param('max_concurrency', max_concurrency) gctx.add_param('memory', int(concurrency.get_max_memory_mb(300))) gctx.set_location(orthophoto_file) cutline_file = gctx.execute(os.path.join("opendm", "grass", "compute_cutline.grass")) if cutline_file != 'error': if io.file_exists(cutline_file): shutil.move(cutline_file, destination) log.ODM_INFO("Generated cutline file: %s --> %s" % (cutline_file, destination)) gctx.cleanup() return destination else: log.ODM_WARNING("Unexpected script result: %s. No cutline file has been generated." % cutline_file) else: log.ODM_WARNING("Could not generate orthophoto cutline. An error occured when running GRASS. No orthophoto will be generated.") else: log.ODM_WARNING("We've been asked to compute cutline, but either %s or %s is missing. Skipping..." % (orthophoto_file, crop_area_file))
def generate_png(orthophoto_file): log.ODM_INFO("Generating PNG") base, ext = os.path.splitext(orthophoto_file) orthophoto_png = base + '.png' system.run('gdal_translate -of png "%s" "%s" ' '--config GDAL_CACHEMAX %s%% ' % (orthophoto_file, orthophoto_png, get_max_memory()))
def crop(gpkg_path, geotiff_path, gdal_options, keep_original=True): if not os.path.exists(gpkg_path) or not os.path.exists(geotiff_path): log.ODM_WARNING( "Either {} or {} does not exist, will skip cropping.".format( gpkg_path, geotiff_path)) return geotiff_path log.ODM_INFO("Cropping %s" % geotiff_path) # Rename original file # path/to/odm_orthophoto.tif --> path/to/odm_orthophoto.original.tif path, filename = os.path.split(geotiff_path) # path = path/to # filename = odm_orthophoto.tif basename, ext = os.path.splitext(filename) # basename = odm_orthophoto # ext = .tif original_geotiff = os.path.join(path, "{}.original{}".format(basename, ext)) os.rename(geotiff_path, original_geotiff) try: kwargs = { 'gpkg_path': gpkg_path, 'geotiffInput': original_geotiff, 'geotiffOutput': geotiff_path, 'options': ' '.join( map(lambda k: '-co {}={}'.format(k, gdal_options[k]), gdal_options)), 'max_memory': get_max_memory() } run('gdalwarp -cutline {gpkg_path} ' '-crop_to_cutline ' '{options} ' '{geotiffInput} ' '{geotiffOutput} ' '--config GDAL_CACHEMAX {max_memory}%'.format(**kwargs)) if not keep_original: os.remove(original_geotiff) except Exception as e: log.ODM_WARNING('Something went wrong while cropping: {}'.format( e.message)) # Revert rename os.rename(original_geotiff, geotiff_path) return geotiff_path
def convert_to_cogeo(src_path, blocksize=256, max_workers=1): """ Guarantee that the .tif passed as an argument is a Cloud Optimized GeoTIFF (cogeo) The file is destructively converted into a cogeo. If the file cannot be converted, the function does not change the file :param src_path: path to GeoTIFF :return: True on success """ if not os.path.isfile(src_path): logger.warning("Cannot convert to cogeo: %s (file does not exist)" % src_path) return False log.ODM_INFO("Optimizing %s as Cloud Optimized GeoTIFF" % src_path) tmpfile = io.related_file_path(src_path, postfix='_cogeo') swapfile = io.related_file_path(src_path, postfix='_cogeo_swap') kwargs = { 'threads': max_workers if max_workers else 'ALL_CPUS', 'blocksize': blocksize, 'max_memory': get_max_memory(), 'src_path': src_path, 'tmpfile': tmpfile, } try: system.run("gdal_translate " "-of COG " "-co NUM_THREADS={threads} " "-co BLOCKSIZE={blocksize} " "-co COMPRESS=deflate " "-co BIGTIFF=IF_SAFER " "-co RESAMPLING=NEAREST " "--config GDAL_CACHEMAX {max_memory}% " "--config GDAL_NUM_THREADS {threads} " "\"{src_path}\" \"{tmpfile}\" ".format(**kwargs)) except Exception as e: log.ODM_WARNING("Cannot create Cloud Optimized GeoTIFF: %s" % str(e)) if os.path.isfile(tmpfile): shutil.move(src_path, swapfile) # Move to swap location try: shutil.move(tmpfile, src_path) except IOError as e: log.ODM_WARNING("Cannot move %s to %s: %s" % (tmpfile, src_path, str(e))) shutil.move(swapfile, src_path) # Attempt to restore if os.path.isfile(swapfile): os.remove(swapfile) return True else: return False
def generate_kmz(orthophoto_file, output_file=None, outsize=None): if output_file is None: base, ext = os.path.splitext(orthophoto_file) output_file = base + '.kmz' # See if we need to select top three bands bandparam = "" gtif = gdal.Open(orthophoto_file) if gtif.RasterCount > 4: bandparam = "-b 1 -b 2 -b 3 -a_nodata 0" system.run( 'gdal_translate -of KMLSUPEROVERLAY -co FORMAT=JPEG "%s" "%s" %s ' '--config GDAL_CACHEMAX %s%% ' % (orthophoto_file, output_file, bandparam, get_max_memory()))
def crop(shapefile_path, geotiff_path, gdal_options, keep_original=True): if not os.path.exists(shapefile_path) or not os.path.exists(geotiff_path): log.ODM_WARNING("Either {} or {} does not exist, will skip cropping.".format(shapefile_path, geotiff_path)) return geotiff_path # Rename original file # path/to/odm_orthophoto.tif --> path/to/odm_orthophoto.original.tif path, filename = os.path.split(geotiff_path) # path = path/to # filename = odm_orthophoto.tif basename, ext = os.path.splitext(filename) # basename = odm_orthophoto # ext = .tif original_geotiff = os.path.join(path, "{}.original{}".format(basename, ext)) os.rename(geotiff_path, original_geotiff) try: kwargs = { 'shapefile_path': shapefile_path, 'geotiffInput': original_geotiff, 'geotiffOutput': geotiff_path, 'options': ' '.join(map(lambda k: '-co {}={}'.format(k, gdal_options[k]), gdal_options)), 'max_memory': get_max_memory() } run('gdalwarp -cutline {shapefile_path} ' '-crop_to_cutline ' '{options} ' '{geotiffInput} ' '{geotiffOutput} ' '--config GDAL_CACHEMAX {max_memory}%'.format(**kwargs)) if not keep_original: os.remove(original_geotiff) except Exception as e: log.ODM_WARNING('Something went wrong while cropping: {}'.format(e.message)) # Revert rename os.rename(original_geotiff, geotiff_path) return geotiff_path
def generate_png(orthophoto_file, output_file=None, outsize=None): if output_file is None: base, ext = os.path.splitext(orthophoto_file) output_file = base + '.png' # See if we need to select top three bands bandparam = "" gtif = gdal.Open(orthophoto_file) if gtif.RasterCount > 4: bandparam = "-b 1 -b 2 -b 3 -a_nodata 0" osparam = "" if outsize is not None: osparam = "-outsize %s 0" % outsize system.run( 'gdal_translate -of png "%s" "%s" %s %s ' '--config GDAL_CACHEMAX %s%% ' % (orthophoto_file, output_file, osparam, bandparam, get_max_memory()))
def compute_cutline(orthophoto_file, crop_area_file, destination, max_concurrency=1, scale=1): if io.file_exists(orthophoto_file) and io.file_exists(crop_area_file): log.ODM_INFO("Computing cutline") scale = max(0.0001, min(1, scale)) scaled_orthophoto = None if scale < 1: log.ODM_INFO("Scaling orthophoto to %s%% to compute cutline" % (scale * 100)) scaled_orthophoto = io.related_file_path(orthophoto_file, postfix=".scaled") # Scale orthophoto before computing cutline system.run("gdal_translate -outsize {}% 0 " "-co NUM_THREADS={} " "--config GDAL_CACHEMAX {}% " '"{}" "{}"'.format(scale * 100, max_concurrency, concurrency.get_max_memory(), orthophoto_file, scaled_orthophoto)) orthophoto_file = scaled_orthophoto # open raster f = rasterio.open(orthophoto_file) rast = f.read(1) # First band only height, width = rast.shape number_lines = int(max(8, math.ceil(min(width, height) / 256.0))) line_hor_offset = int(width / number_lines) line_ver_offset = int(height / number_lines) if line_hor_offset <= 2 or line_ver_offset <= 2: log.ODM_WARNING( "Cannot compute cutline, orthophoto is too small (%sx%spx)" % (width, height)) return crop_f = fiona.open(crop_area_file, 'r') if len(crop_f) == 0: log.ODM_WARNING("Crop area is empty, cannot compute cutline") return crop_poly = shape(crop_f[1]['geometry']) crop_f.close() linestrings = [] # Compute canny edges on first band edges = canny(rast) def compute_linestrings(direction): log.ODM_INFO("Computing %s cutlines" % direction) # Initialize cost map cost_map = np.full((height, width), 1, dtype=np.float32) # Write edges to cost map cost_map[edges == True] = 0 # Low cost # Write "barrier, floor is lava" costs if direction == 'vertical': lines = [((i, 0), (i, height - 1)) for i in range(line_hor_offset, width - line_hor_offset, line_hor_offset)] points = [] pad_x = int(line_hor_offset / 2.0) for i in range(0, len(lines)): a, b = lines[i] points.append(((a[0] - pad_x, a[1]), (b[0] - pad_x, b[1]))) a, b = lines[-1] points.append(((a[0] + pad_x, a[1]), (b[0] + pad_x, b[1]))) else: lines = [((0, j), (width - 1, j)) for j in range(line_ver_offset, height - line_ver_offset, line_ver_offset)] points = [] pad_y = int(line_ver_offset / 2.0) for i in range(0, len(lines)): a, b = lines[i] points.append(((a[0], a[1] - pad_y), (b[0], b[1] - pad_y))) a, b = lines[-1] points.append(((a[0], a[1] + pad_y), (b[0], b[1] + pad_y))) for a, b in lines: rr, cc = line(*a, *b) cost_map[cc, rr] = 9999 # Lava # Calculate route for a, b in points: line_coords, cost = route_through_array(cost_map, (a[1], a[0]), (b[1], b[0]), fully_connected=True, geometric=True) # Convert to geographic geo_line_coords = [f.xy(*c) for c in line_coords] # Simplify ls = LineString(geo_line_coords) linestrings.append(ls.simplify(0.05, preserve_topology=False)) compute_linestrings('vertical') compute_linestrings('horizontal') # Generate polygons and keep only those inside the crop area log.ODM_INFO("Generating polygons... this could take a bit.") polygons = [] for p in polygonize(unary_union(linestrings)): if crop_poly.contains(p): polygons.append(p) # This should never happen if len(polygons) == 0: log.ODM_WARNING("No polygons, cannot compute cutline") return log.ODM_INFO("Merging polygons") cutline_polygons = unary_union(polygons) if not hasattr(cutline_polygons, '__getitem__'): cutline_polygons = [cutline_polygons] largest_cutline = cutline_polygons[0] max_area = largest_cutline.area for p in cutline_polygons: if p.area > max_area: max_area = p.area largest_cutline = p log.ODM_INFO("Largest cutline found: %s m^2" % max_area) meta = { 'crs': { 'init': str(f.crs).lower() }, 'driver': 'GPKG', 'schema': { 'properties': {}, 'geometry': 'Polygon' } } # Remove previous if os.path.exists(destination): os.remove(destination) with fiona.open(destination, 'w', **meta) as sink: sink.write({ 'geometry': mapping(largest_cutline), 'properties': {} }) f.close() log.ODM_INFO("Wrote %s" % destination) # Cleanup if scaled_orthophoto is not None and os.path.exists(scaled_orthophoto): os.remove(scaled_orthophoto) else: log.ODM_WARNING( "We've been asked to compute cutline, but either %s or %s is missing. Skipping..." % (orthophoto_file, crop_area_file))
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True, outdir='', resolution=0.1, max_workers=1, max_tile_size=4096, verbose=False, decimation=None, keep_unfilled_copy=False, apply_smoothing=True): """ Create DEM from multiple radii, and optionally gapfill """ global error error = None start = datetime.now() if not os.path.exists(outdir): log.ODM_INFO("Creating %s" % outdir) os.mkdir(outdir) extent = point_cloud.get_extent(input_point_cloud) log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy'])) ext_width = extent['maxx'] - extent['minx'] ext_height = extent['maxy'] - extent['miny'] w, h = (int(math.ceil(ext_width / float(resolution))), int(math.ceil(ext_height / float(resolution)))) # Set a floor, no matter the resolution parameter # (sometimes a wrongly estimated scale of the model can cause the resolution # to be set unrealistically low, causing errors) RES_FLOOR = 64 if w < RES_FLOOR and h < RES_FLOOR: prev_w, prev_h = w, h if w >= h: w, h = (RES_FLOOR, int(math.ceil(ext_height / ext_width * RES_FLOOR))) else: w, h = (int(math.ceil(ext_width / ext_height * RES_FLOOR)), RES_FLOOR) floor_ratio = prev_w / float(w) resolution *= floor_ratio radiuses = [str(float(r) * floor_ratio) for r in radiuses] log.ODM_WARNING("Really low resolution DEM requested %s will set floor at %s pixels. Resolution changed to %s. The scale of this reconstruction might be off." % ((prev_w, prev_h), RES_FLOOR, resolution)) final_dem_pixels = w * h num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2)))) num_tiles = num_splits * num_splits log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % ((h, w), max_tile_size, num_tiles)) tile_bounds_width = ext_width / float(num_splits) tile_bounds_height = ext_height / float(num_splits) tiles = [] for r in radiuses: minx = extent['minx'] for x in range(num_splits): miny = extent['miny'] if x == num_splits - 1: maxx = extent['maxx'] else: maxx = minx + tile_bounds_width for y in range(num_splits): if y == num_splits - 1: maxy = extent['maxy'] else: maxy = miny + tile_bounds_height filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y)) tiles.append({ 'radius': r, 'bounds': { 'minx': minx, 'maxx': maxx, 'miny': miny, 'maxy': maxy }, 'filename': filename }) miny = maxy minx = maxx # Sort tiles by increasing radius tiles.sort(key=lambda t: float(t['radius']), reverse=True) def process_tile(q): log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution)) d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds']) if dem_type == 'dtm': d = pdal.json_add_classification_filter(d, 2) if decimation is not None: d = pdal.json_add_decimation_filter(d, decimation) pdal.json_add_readers(d, [input_point_cloud]) pdal.run_pipeline(d, verbose=verbose) parallel_map(process_tile, tiles, max_workers) output_file = "%s.tif" % dem_type output_path = os.path.abspath(os.path.join(outdir, output_file)) # Verify tile results for t in tiles: if not os.path.exists(t['filename']): raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename'])) # Create virtual raster tiles_vrt_path = os.path.abspath(os.path.join(outdir, "tiles.vrt")) run('gdalbuildvrt "%s" "%s"' % (tiles_vrt_path, '" "'.join(map(lambda t: t['filename'], tiles)))) merged_vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt")) geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'tiles.tmp.tif')) geotiff_small_path = os.path.abspath(os.path.join(outdir, 'tiles.small.tif')) geotiff_small_filled_path = os.path.abspath(os.path.join(outdir, 'tiles.small_filled.tif')) geotiff_path = os.path.abspath(os.path.join(outdir, 'tiles.tif')) # Build GeoTIFF kwargs = { 'max_memory': get_max_memory(), 'threads': max_workers if max_workers else 'ALL_CPUS', 'tiles_vrt': tiles_vrt_path, 'merged_vrt': merged_vrt_path, 'geotiff': geotiff_path, 'geotiff_tmp': geotiff_tmp_path, 'geotiff_small': geotiff_small_path, 'geotiff_small_filled': geotiff_small_filled_path } if gapfill: # Sometimes, for some reason gdal_fillnodata.py # behaves strangely when reading data directly from a .VRT # so we need to convert to GeoTIFF first. run('gdal_translate ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{tiles_vrt} {geotiff_tmp}'.format(**kwargs)) # Scale to 10% size run('gdal_translate ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '-outsize 10% 0 ' '{geotiff_tmp} {geotiff_small}'.format(**kwargs)) # Fill scaled run('gdal_fillnodata.py ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '-b 1 ' '-of GTiff ' '{geotiff_small} {geotiff_small_filled}'.format(**kwargs)) # Merge filled scaled DEM with unfilled DEM using bilinear interpolation run('gdalbuildvrt -resolution highest -r bilinear "%s" "%s" "%s"' % (merged_vrt_path, geotiff_small_filled_path, geotiff_tmp_path)) run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '{merged_vrt} {geotiff}'.format(**kwargs)) else: run('gdal_translate ' '-co NUM_THREADS={threads} ' '-co TILED=YES ' '-co COMPRESS=DEFLATE ' '--config GDAL_CACHEMAX {max_memory}% ' '{tiles_vrt} {geotiff}'.format(**kwargs)) if apply_smoothing: median_smoothing(geotiff_path, output_path) os.remove(geotiff_path) else: os.rename(geotiff_path, output_path) if os.path.exists(geotiff_tmp_path): if not keep_unfilled_copy: os.remove(geotiff_tmp_path) else: os.rename(geotiff_tmp_path, io.related_file_path(output_path, postfix=".unfilled")) for cleanup_file in [tiles_vrt_path, merged_vrt_path, geotiff_small_path, geotiff_small_filled_path]: if os.path.exists(cleanup_file): os.remove(cleanup_file) for t in tiles: if os.path.exists(t['filename']): os.remove(t['filename']) log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree reconstruction = inputs.reconstruction verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': 1.0 / (gsd.cap_resolution(self.params.resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0), 'verbose': verbose } # Have geo coordinates? georef = reconstruction.georef # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: we should move this to a more central # location (perhaps during the dataset initialization) if georef and not georef.utm_east_offset: georeferencing_dir = tree.odm_georeferencing if args.use_3dmesh and not args.skip_3dmodel else tree.odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join( georeferencing_dir, tree.odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): georef.extract_offsets( odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING( 'Cannot read UTM offset from {}. An orthophoto will not be generated.' .format(odm_georeferencing_model_txt_geo_file)) if georef: if args.use_3dmesh: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_3dmesh: kwargs['model_geo'] = os.path.join( tree.odm_texturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join( tree.odm_25dtexturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run( '{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if georef and georef.projection and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'proj': georef.projection.srs, 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), 'threads': self.params.max_concurrency } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS={threads} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '{png} {tiff} > {log}'.format(**kwargs)) if args.crop > 0: shapefile_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.shp') Cropper.crop( shapefile_path, tree.odm_orthophoto_tif, { 'TILED': 'NO' if self.params.no_tiled else 'YES', 'COMPRESS': self.params.compress, 'PREDICTOR': '2' if self.params.compress in ['LZW', 'DEFLATE'] else '1', 'BIGTIFF': self.params.bigtiff, 'BLOCKXSIZE': 512, 'BLOCKYSIZE': 512, 'NUM_THREADS': self.params.max_concurrency }) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run( 'gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING( 'No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def create_dem(input_point_cloud, dem_type, output_type='max', radiuses=['0.56'], gapfill=True, outdir='', resolution=0.1, max_workers=1, max_tile_size=2048, verbose=False, decimation=None): """ Create DEM from multiple radii, and optionally gapfill """ global error error = None start = datetime.now() if not os.path.exists(outdir): log.ODM_INFO("Creating %s" % outdir) os.mkdir(outdir) extent = point_cloud.get_extent(input_point_cloud) log.ODM_INFO("Point cloud bounds are [minx: %s, maxx: %s] [miny: %s, maxy: %s]" % (extent['minx'], extent['maxx'], extent['miny'], extent['maxy'])) ext_width = extent['maxx'] - extent['minx'] ext_height = extent['maxy'] - extent['miny'] final_dem_resolution = (int(math.ceil(ext_width / float(resolution))), int(math.ceil(ext_height / float(resolution)))) final_dem_pixels = final_dem_resolution[0] * final_dem_resolution[1] num_splits = int(max(1, math.ceil(math.log(math.ceil(final_dem_pixels / float(max_tile_size * max_tile_size)))/math.log(2)))) num_tiles = num_splits * num_splits log.ODM_INFO("DEM resolution is %s, max tile size is %s, will split DEM generation into %s tiles" % (final_dem_resolution, max_tile_size, num_tiles)) tile_bounds_width = ext_width / float(num_splits) tile_bounds_height = ext_height / float(num_splits) tiles = [] for r in radiuses: minx = extent['minx'] for x in range(num_splits): miny = extent['miny'] if x == num_splits - 1: maxx = extent['maxx'] else: maxx = minx + tile_bounds_width for y in range(num_splits): if y == num_splits - 1: maxy = extent['maxy'] else: maxy = miny + tile_bounds_height filename = os.path.join(os.path.abspath(outdir), '%s_r%s_x%s_y%s.tif' % (dem_type, r, x, y)) tiles.append({ 'radius': r, 'bounds': { 'minx': minx, 'maxx': maxx, 'miny': miny, 'maxy': maxy }, 'filename': filename }) miny = maxy minx = maxx # Sort tiles by increasing radius tiles.sort(key=lambda t: float(t['radius']), reverse=True) def process_one(q): log.ODM_INFO("Generating %s (%s, radius: %s, resolution: %s)" % (q['filename'], output_type, q['radius'], resolution)) d = pdal.json_gdal_base(q['filename'], output_type, q['radius'], resolution, q['bounds']) if dem_type == 'dsm': d = pdal.json_add_classification_filter(d, 2, equality='max') elif dem_type == 'dtm': d = pdal.json_add_classification_filter(d, 2) if decimation is not None: d = pdal.json_add_decimation_filter(d, decimation) pdal.json_add_readers(d, [input_point_cloud]) pdal.run_pipeline(d, verbose=verbose) def worker(): global error while True: (num, q) = pq.get() if q is None or error is not None: pq.task_done() break try: process_one(q) except Exception as e: error = e finally: pq.task_done() if max_workers > 1: use_single_thread = False pq = queue.PriorityQueue() threads = [] for i in range(max_workers): t = threading.Thread(target=worker) t.start() threads.append(t) for t in tiles: pq.put((i, t.copy())) def stop_workers(): for i in range(len(threads)): pq.put((-1, None)) for t in threads: t.join() # block until all tasks are done try: while pq.unfinished_tasks > 0: time.sleep(0.5) except KeyboardInterrupt: print("CTRL+C terminating...") stop_workers() sys.exit(1) stop_workers() if error is not None: # Try to reprocess using a single thread # in case this was a memory error log.ODM_WARNING("DEM processing failed with multiple threads, let's retry with a single thread...") use_single_thread = True else: use_single_thread = True if use_single_thread: # Boring, single thread processing for q in tiles: process_one(q) output_file = "%s.tif" % dem_type output_path = os.path.abspath(os.path.join(outdir, output_file)) # Verify tile results for t in tiles: if not os.path.exists(t['filename']): raise Exception("Error creating %s, %s failed to be created" % (output_file, t['filename'])) # Create virtual raster vrt_path = os.path.abspath(os.path.join(outdir, "merged.vrt")) run('gdalbuildvrt "%s" "%s"' % (vrt_path, '" "'.join(map(lambda t: t['filename'], tiles)))) geotiff_tmp_path = os.path.abspath(os.path.join(outdir, 'merged.tmp.tif')) geotiff_path = os.path.abspath(os.path.join(outdir, 'merged.tif')) # Build GeoTIFF kwargs = { 'max_memory': get_max_memory(), 'threads': max_workers if max_workers else 'ALL_CPUS', 'vrt': vrt_path, 'geotiff': geotiff_path, 'geotiff_tmp': geotiff_tmp_path } if gapfill: # Sometimes, for some reason gdal_fillnodata.py # behaves strangely when reading data directly from a .VRT # so we need to convert to GeoTIFF first. run('gdal_translate ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{vrt} {geotiff_tmp}'.format(**kwargs)) run('gdal_fillnodata.py ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '-b 1 ' '-of GTiff ' '{geotiff_tmp} {geotiff}'.format(**kwargs)) else: run('gdal_translate ' '-co NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{vrt} {geotiff}'.format(**kwargs)) post_process(geotiff_path, output_path) os.remove(geotiff_path) if os.path.exists(geotiff_tmp_path): os.remove(geotiff_tmp_path) if os.path.exists(vrt_path): os.remove(vrt_path) for t in tiles: if os.path.exists(t['filename']): os.remove(t['filename']) log.ODM_INFO('Completed %s in %s' % (output_file, datetime.now() - start))
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] verbose = '-verbose' if args.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) if not io.file_exists(tree.odm_orthophoto_file) or self.rerun(): # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': 1.0 / (gsd.cap_resolution(args.orthophoto_resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0), 'verbose': verbose } # Have geo coordinates? georef = reconstruction.georef # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: this should be moved to a more central location? if reconstruction.is_georeferenced() and not reconstruction.georef.valid_utm_offsets(): georeferencing_dir = tree.odm_georeferencing if args.use_3dmesh and not args.skip_3dmodel else tree.odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join(georeferencing_dir, tree.odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): reconstruction.georef.extract_offsets(odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING('Cannot read UTM offset from {}. An orthophoto will not be generated.'.format(odm_georeferencing_model_txt_geo_file)) if reconstruction.is_georeferenced(): if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run('{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if reconstruction.is_georeferenced() and reconstruction.georef.valid_utm_offsets(): ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(reconstruction.georef.utm_east_offset) lry = float(tokens[1]) + \ float(reconstruction.georef.utm_north_offset) lrx = float(tokens[2]) + \ float(reconstruction.georef.utm_east_offset) uly = float(tokens[3]) + \ float(reconstruction.georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') orthophoto_vars = orthophoto.get_orthophoto_vars(args) kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'vars': ' '.join(['-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars]), 'proj': reconstruction.georef.proj4(), 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{vars} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '{png} {tiff} > {log}'.format(**kwargs)) bounds_file_path = os.path.join(tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') # Cutline computation, before cropping # We want to use the full orthophoto, not the cropped one. if args.orthophoto_cutline: compute_cutline(tree.odm_orthophoto_tif, bounds_file_path, os.path.join(tree.odm_orthophoto, "cutline.gpkg"), args.max_concurrency, tmpdir=os.path.join(tree.odm_orthophoto, "grass_cutline_tmpdir"), scale=0.25) if args.crop > 0: Cropper.crop(bounds_file_path, tree.odm_orthophoto_tif, orthophoto_vars) if args.build_overviews: orthophoto.build_overviews(tree.odm_orthophoto_tif) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING('No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file)
def process(args, current_path, max_concurrency, reconstruction): #args = vars(args) orthophoto_cutline = True odm_orthophoto = io.join_paths(current_path, 'orthophoto') odm_orthophoto_path = odm_orthophoto odm_orthophoto_render = io.join_paths(odm_orthophoto_path, 'odm_orthophoto_render.tif') odm_orthophoto_tif = io.join_paths(odm_orthophoto_path, 'odm_orthophoto.tif') odm_orthophoto_corners = io.join_paths(odm_orthophoto_path, 'odm_orthophoto_corners.tif') odm_orthophoto_log = io.join_paths(odm_orthophoto_path, 'odm_orthophoto_log.tif') odm_orthophoto_tif_log = io.join_paths(odm_orthophoto_path, 'gdal_translate_log.txt') odm_25dgeoreferencing = io.join_paths(current_path, 'odm_georeferencing') odm_georeferencing = io.join_paths(current_path, 'odm_georeferencing') odm_georeferencing_coords = io.join_paths(odm_georeferencing, 'coords.txt') odm_georeferencing_gcp = io.find('gcp_list.txt', current_path) odm_georeferencing_gcp_utm = io.join_paths(odm_georeferencing, 'gcp_list_utm.txt') odm_georeferencing_utm_log = io.join_paths( odm_georeferencing, 'odm_georeferencing_utm_log.txt') odm_georeferencing_log = 'odm_georeferencing_log.txt' odm_georeferencing_transform_file = 'odm_georeferencing_transform.txt' odm_georeferencing_proj = 'proj.txt' odm_georeferencing_model_txt_geo = 'odm_georeferencing_model_geo.txt' odm_georeferencing_model_obj_geo = 'odm_textured_model_geo.obj' odm_georeferencing_xyz_file = io.join_paths(odm_georeferencing, 'odm_georeferenced_model.csv') odm_georeferencing_las_json = io.join_paths(odm_georeferencing, 'las.json') odm_georeferencing_model_laz = io.join_paths( odm_georeferencing, 'odm_georeferenced_model.laz') odm_georeferencing_model_las = io.join_paths( odm_georeferencing, 'odm_georeferenced_model.las') odm_georeferencing_dem = io.join_paths(odm_georeferencing, 'odm_georeferencing_model_dem.tif') opensfm_reconstruction = io.join_paths(current_path, 'reconstruction.json') odm_texturing = io.join_paths(current_path, 'mvs') odm_textured_model_obj = io.join_paths(odm_texturing, 'odm_textured_model.obj') images_dir = io.join_paths(current_path, 'images') reconstruction = reconstruction verbose = '' #"-verbose" # define paths and create working directories system.mkdir_p(odm_orthophoto) if not io.file_exists(odm_orthophoto_tif): gsd_error_estimate = 0.1 ignore_resolution = False if not reconstruction.is_georeferenced(): # Match DEMs gsd_error_estimate = -3 ignore_resolution = True orthophoto_resolution = 5 resolution = 1.0 / ( gsd.cap_resolution(orthophoto_resolution, opensfm_reconstruction, gsd_error_estimate=gsd_error_estimate, ignore_gsd=True, ignore_resolution=ignore_resolution, has_gcp=reconstruction.has_gcp()) / 100.0) # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': odm_orthophoto_log, 'ortho': odm_orthophoto_render, 'corners': odm_orthophoto_corners, 'res': resolution, 'bands': '', 'verbose': verbose } # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: this should be moved to a more central location? if reconstruction.is_georeferenced( ) and not reconstruction.georef.valid_utm_offsets(): georeferencing_dir = odm_georeferencing #if args.use_3dmesh and not args.skip_3dmodel else odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join( georeferencing_dir, odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): reconstruction.georef.extract_offsets( odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING('Cannot read UTM offset from {}.'.format( odm_georeferencing_model_txt_geo_file)) models = [] base_dir = odm_texturing if reconstruction.is_georeferenced(): model_file = odm_georeferencing_model_obj_geo else: model_file = odm_textured_model_obj if reconstruction.multi_camera: for band in reconstruction.multi_camera: primary = band == reconstruction.multi_camera[0] subdir = "" if not primary: subdir = band['name'].lower() models.append(os.path.join(base_dir, subdir, model_file)) kwargs['bands'] = '-bands %s' % (','.join([ quote(b['name'].lower()) for b in reconstruction.multi_camera ])) else: models.append(os.path.join(base_dir, model_file)) kwargs['models'] = ','.join(map(quote, models)) # run odm_orthophoto system.run( '{bin}/odm_orthophoto -inputFiles {models} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners} {bands}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if reconstruction.is_georeferenced( ) and reconstruction.georef.valid_utm_offsets(): ulx = uly = lrx = lry = 0.0 with open(odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(reconstruction.georef.utm_east_offset) lry = float(tokens[1]) + \ float(reconstruction.georef.utm_north_offset) lrx = float(tokens[2]) + \ float(reconstruction.georef.utm_east_offset) uly = float(tokens[3]) + \ float(reconstruction.georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') orthophoto_vars = orthophoto.get_orthophoto_vars(args) kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'vars': ' '.join([ '-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars ]), 'proj': reconstruction.georef.proj4(), 'input': odm_orthophoto_render, 'output': odm_orthophoto_tif, 'log': odm_orthophoto_tif_log, 'max_memory': get_max_memory(), } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{vars} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '--config GDAL_TIFF_INTERNAL_MASK YES ' '{input} {output} > {log}'.format(**kwargs)) bounds_file_path = os.path.join( odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') # Cutline computation, before cropping # We want to use the full orthophoto, not the cropped one. pio = True if pio: cutline_file = os.path.join(odm_orthophoto, "cutline.gpkg") compute_cutline(odm_orthophoto_tif, bounds_file_path, cutline_file, max_concurrency, tmpdir=os.path.join(odm_orthophoto, "grass_cutline_tmpdir"), scale=0.25) orthophoto.compute_mask_raster(odm_orthophoto_tif, cutline_file, os.path.join( odm_orthophoto, "odm_orthophoto_cut.tif"), blend_distance=20, only_max_coords_feature=True) orthophoto.post_orthophoto_steps(args, bounds_file_path, odm_orthophoto_tif) # Generate feathered orthophoto also if pio: orthophoto.feather_raster(odm_orthophoto_tif, os.path.join( odm_orthophoto, "odm_orthophoto_feathered.tif"), blend_distance=20) geotiffcreated = True if not geotiffcreated: if io.file_exists(odm_orthophoto_render): pseudogeo.add_pseudo_georeferencing(odm_orthophoto_render) log.ODM_INFO("Renaming %s --> %s" % (odm_orthophoto_render, odm_orthophoto_tif)) os.rename(odm_orthophoto_render, odm_orthophoto_tif) else: log.ODM_WARNING( "Could not generate an orthophoto (it did not render)") else: log.ODM_WARNING('Found a valid orthophoto in: %s' % odm_orthophoto_tif) #generate png orthophoto.generate_png(odm_orthophoto_tif)
def process(self, inputs, outputs): # Benchmarking start_time = system.now_raw() log.ODM_INFO('Running ODM Orthophoto Cell') # get inputs args = self.inputs.args tree = self.inputs.tree reconstruction = inputs.reconstruction verbose = '-verbose' if self.params.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) # check if we rerun cell or not rerun_cell = (args.rerun is not None and args.rerun == 'odm_orthophoto') or \ (args.rerun_all) or \ (args.rerun_from is not None and 'odm_orthophoto' in args.rerun_from) if not io.file_exists(tree.odm_orthophoto_file) or rerun_cell: # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_file, 'corners': tree.odm_orthophoto_corners, 'res': 1.0 / (gsd.cap_resolution(self.params.resolution, tree.opensfm_reconstruction, ignore_gsd=args.ignore_gsd) / 100.0), 'verbose': verbose } # Have geo coordinates? georef = reconstruction.georef # Check if the georef object is initialized # (during a --rerun this might not be) # TODO: we should move this to a more central # location (perhaps during the dataset initialization) if georef and not georef.utm_east_offset: georeferencing_dir = tree.odm_georeferencing if args.use_3dmesh and not args.skip_3dmodel else tree.odm_25dgeoreferencing odm_georeferencing_model_txt_geo_file = os.path.join(georeferencing_dir, tree.odm_georeferencing_model_txt_geo) if io.file_exists(odm_georeferencing_model_txt_geo_file): georef.extract_offsets(odm_georeferencing_model_txt_geo_file) else: log.ODM_WARNING('Cannot read UTM offset from {}. An orthophoto will not be generated.'.format(odm_georeferencing_model_txt_geo_file)) if georef: if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_georeferencing_model_obj_geo) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_georeferencing_model_obj_geo) else: if args.use_3dmesh: kwargs['model_geo'] = os.path.join(tree.odm_texturing, tree.odm_textured_model_obj) else: kwargs['model_geo'] = os.path.join(tree.odm_25dtexturing, tree.odm_textured_model_obj) # run odm_orthophoto system.run('{bin}/odm_orthophoto -inputFile {model_geo} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if georef and georef.projection and georef.utm_east_offset and georef.utm_north_offset: ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(georef.utm_east_offset) lry = float(tokens[1]) + \ float(georef.utm_north_offset) lrx = float(tokens[2]) + \ float(georef.utm_east_offset) uly = float(tokens[3]) + \ float(georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'tiled': '' if self.params.no_tiled else '-co TILED=yes ', 'compress': self.params.compress, 'predictor': '-co PREDICTOR=2 ' if self.params.compress in ['LZW', 'DEFLATE'] else '', 'proj': georef.projection.srs, 'bigtiff': self.params.bigtiff, 'png': tree.odm_orthophoto_file, 'tiff': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), 'threads': self.params.max_concurrency } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{tiled} ' '-co BIGTIFF={bigtiff} ' '-co COMPRESS={compress} ' '{predictor} ' '-co BLOCKXSIZE=512 ' '-co BLOCKYSIZE=512 ' '-co NUM_THREADS={threads} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '{png} {tiff} > {log}'.format(**kwargs)) if args.crop > 0: shapefile_path = os.path.join(tree.odm_georeferencing, 'odm_georeferenced_model.bounds.shp') Cropper.crop(shapefile_path, tree.odm_orthophoto_tif, { 'TILED': 'NO' if self.params.no_tiled else 'YES', 'COMPRESS': self.params.compress, 'PREDICTOR': '2' if self.params.compress in ['LZW', 'DEFLATE'] else '1', 'BIGTIFF': self.params.bigtiff, 'BLOCKXSIZE': 512, 'BLOCKYSIZE': 512, 'NUM_THREADS': self.params.max_concurrency }) if self.params.build_overviews: log.ODM_DEBUG("Building Overviews") kwargs = { 'orthophoto': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_gdaladdo_log } # Run gdaladdo system.run('gdaladdo -ro -r average ' '--config BIGTIFF_OVERVIEW IF_SAFER ' '--config COMPRESS_OVERVIEW JPEG ' '{orthophoto} 2 4 8 16 > {log}'.format(**kwargs)) geotiffcreated = True if not geotiffcreated: log.ODM_WARNING('No geo-referenced orthophoto created due ' 'to missing geo-referencing or corner coordinates.') else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_file) if args.time: system.benchmark(start_time, tree.benchmarking, 'Orthophoto') log.ODM_INFO('Running ODM OrthoPhoto Cell - Finished') return ecto.OK if args.end_with != 'odm_orthophoto' else ecto.QUIT
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] if outputs['large']: if not os.path.exists(tree.submodels_path): log.ODM_ERROR( "We reached the merge stage, but %s folder does not exist. Something must have gone wrong at an earlier stage. Check the log and fix possible problem before restarting?" % tree.submodels_path) exit(1) # Merge point clouds if args.merge in ['all', 'pointcloud']: if not io.file_exists( tree.odm_georeferencing_model_laz) or self.rerun(): all_point_clouds = get_submodel_paths( tree.submodels_path, "odm_georeferencing", "odm_georeferenced_model.laz") try: # pdal.merge_point_clouds(all_point_clouds, tree.odm_georeferencing_model_laz, args.verbose) entwine.build(all_point_clouds, tree.entwine_pointcloud, max_concurrency=args.max_concurrency, rerun=self.rerun()) except Exception as e: log.ODM_WARNING( "Could not merge point cloud: %s (skipping)" % str(e)) if io.dir_exists(tree.entwine_pointcloud): try: system.run('pdal translate "ept://{}" "{}"'.format( tree.entwine_pointcloud, tree.odm_georeferencing_model_laz)) except Exception as e: log.ODM_WARNING( "Cannot export EPT dataset to LAZ: %s" % str(e)) else: log.ODM_WARNING("Found merged point cloud in %s" % tree.odm_georeferencing_model_laz) self.update_progress(25) # Merge crop bounds merged_bounds_file = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') if not io.file_exists(merged_bounds_file) or self.rerun(): all_bounds = get_submodel_paths( tree.submodels_path, 'odm_georeferencing', 'odm_georeferenced_model.bounds.gpkg') log.ODM_INFO("Merging all crop bounds: %s" % all_bounds) if len(all_bounds) > 0: # Calculate a new crop area # based on the convex hull of all crop areas of all submodels # (without a buffer, otherwise we are double-cropping) Cropper.merge_bounds(all_bounds, merged_bounds_file, 0) else: log.ODM_WARNING("No bounds found for any submodel.") # Merge orthophotos if args.merge in ['all', 'orthophoto']: if not io.dir_exists(tree.odm_orthophoto): system.mkdir_p(tree.odm_orthophoto) if not io.file_exists(tree.odm_orthophoto_tif) or self.rerun(): all_orthos_and_cutlines = get_all_submodel_paths( tree.submodels_path, os.path.join("odm_orthophoto", "odm_orthophoto.tif"), os.path.join("odm_orthophoto", "cutline.gpkg"), ) if len(all_orthos_and_cutlines) > 1: log.ODM_INFO( "Found %s submodels with valid orthophotos and cutlines" % len(all_orthos_and_cutlines)) # TODO: histogram matching via rasterio # currently parts have different color tones merged_geotiff = os.path.join( tree.odm_orthophoto, "odm_orthophoto.merged.tif") kwargs = { 'orthophoto_merged': merged_geotiff, 'input_files': ' '.join( map(lambda i: quote(i[0]), all_orthos_and_cutlines)), 'max_memory': get_max_memory(), 'threads': args.max_concurrency, } # use bounds as cutlines (blending) if io.file_exists(merged_geotiff): os.remove(merged_geotiff) system.run('gdal_merge.py -o {orthophoto_merged} ' #'-createonly ' '-co "BIGTIFF=YES" ' '-co "BLOCKXSIZE=512" ' '-co "BLOCKYSIZE=512" ' '--config GDAL_CACHEMAX {max_memory}% ' '{input_files} '.format(**kwargs)) for ortho_cutline in all_orthos_and_cutlines: kwargs['input_file'], kwargs[ 'cutline'] = ortho_cutline # Note: cblend has a high performance penalty system.run( 'gdalwarp -cutline {cutline} ' '-cblend 20 ' '-r bilinear -multi ' '-wo NUM_THREADS={threads} ' '--config GDAL_CACHEMAX {max_memory}% ' '{input_file} {orthophoto_merged}'.format( **kwargs)) # Apply orthophoto settings (compression, tiling, etc.) orthophoto_vars = orthophoto.get_orthophoto_vars(args) if io.file_exists(tree.odm_orthophoto_tif): os.remove(tree.odm_orthophoto_tif) kwargs = { 'vars': ' '.join([ '-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars ]), 'max_memory': get_max_memory(), 'merged': merged_geotiff, 'log': tree.odm_orthophoto_tif_log, 'orthophoto': tree.odm_orthophoto_tif, } system.run( 'gdal_translate ' '{vars} ' '--config GDAL_CACHEMAX {max_memory}% ' '{merged} {orthophoto} > {log}'.format(**kwargs)) os.remove(merged_geotiff) # Crop if args.crop > 0: Cropper.crop(merged_bounds_file, tree.odm_orthophoto_tif, orthophoto_vars) # Overviews if args.build_overviews: orthophoto.build_overviews(tree.odm_orthophoto_tif) elif len(all_orthos_and_cutlines) == 1: # Simply copy log.ODM_WARNING( "A single orthophoto/cutline pair was found between all submodels." ) shutil.copyfile(all_orthos_and_cutlines[0][0], tree.odm_orthophoto_tif) else: log.ODM_WARNING( "No orthophoto/cutline pairs were found in any of the submodels. No orthophoto will be generated." ) else: log.ODM_WARNING("Found merged orthophoto in %s" % tree.odm_orthophoto_tif) self.update_progress(75) # Merge DEMs def merge_dems(dem_filename, human_name): if not io.dir_exists(tree.path('odm_dem')): system.mkdir_p(tree.path('odm_dem')) dem_file = tree.path("odm_dem", dem_filename) if not io.file_exists(dem_file) or self.rerun(): all_dems = get_submodel_paths(tree.submodels_path, "odm_dem", dem_filename) log.ODM_INFO("Merging %ss" % human_name) # Merge dem_vars = utils.get_dem_vars(args) euclidean_merge_dems(all_dems, dem_file, dem_vars) if io.file_exists(dem_file): # Crop if args.crop > 0: Cropper.crop(merged_bounds_file, dem_file, dem_vars) log.ODM_INFO("Created %s" % dem_file) else: log.ODM_WARNING("Cannot merge %s, %s was not created" % (human_name, dem_file)) else: log.ODM_WARNING("Found merged %s in %s" % (human_name, dem_filename)) if args.merge in ['all', 'dem'] and args.dsm: merge_dems("dsm.tif", "DSM") if args.merge in ['all', 'dem'] and args.dtm: merge_dems("dtm.tif", "DTM") # Stop the pipeline short! We're done. self.next_stage = None else: log.ODM_INFO("Normal dataset, nothing to merge.") self.progress = 0.0
def process(self, args, outputs): orthophoto_file = os.path.join(args.project_path, "odm_orthophoto", "odm_orthophoto.tif") orthophoto_render_file = os.path.join(args.project_path, "odm_orthophoto", "odm_orthophoto_render.tif") orthophoto_corners_file = os.path.join(args.project_path, "odm_orthophoto", "odm_orthophoto_corners.txt") if not io.file_exists(orthophoto_file) or self.rerun(): kwargs = { 'ortho': orthophoto_render_file, 'corners': orthophoto_corners_file, 'res': 100.0 / args.orthophoto_resolution, 'verbose': '--verbose' if args.verbose else '', 'models': outputs["textured_model_obj"] } system.run('odm_orthophoto -inputFiles {models} ' '-outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners}'.format(**kwargs)) utm_east_offset, utm_north_offset = outputs["utm_offset"] proj4_srs = outputs["utm_srs"].to_proj4() ulx = uly = lrx = lry = 0.0 with open(orthophoto_corners_file) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + utm_east_offset lry = float(tokens[1]) + utm_north_offset lrx = float(tokens[2]) + utm_east_offset uly = float(tokens[3]) + utm_north_offset log.ODM_INFO('Creating GeoTIFF') orthophoto_vars = orthophoto.get_orthophoto_vars(args) kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'vars': ' '.join([ '-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars ]), 'proj': proj4_srs, 'input': orthophoto_render_file, 'output': orthophoto_file, 'max_memory': get_max_memory(), } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{vars} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '--config GDAL_TIFF_INTERNAL_MASK YES ' '{input} {output}'.format(**kwargs)) #orthophoto.post_orthophoto_steps(args, bounds_file_path, tree.odm_orthophoto_tif) else: log.ODM_WARNING('Found a valid orthophoto in: %s' % orthophoto_file)
def process(self, args, outputs): tree = outputs['tree'] reconstruction = outputs['reconstruction'] verbose = '-verbose' if args.verbose else '' # define paths and create working directories system.mkdir_p(tree.odm_orthophoto) if not io.file_exists(tree.odm_orthophoto_tif) or self.rerun(): gsd_error_estimate = 0.1 ignore_resolution = False if not reconstruction.is_georeferenced(): # Match DEMs gsd_error_estimate = -3 ignore_resolution = True resolution = 1.0 / ( gsd.cap_resolution(args.orthophoto_resolution, tree.opensfm_reconstruction, gsd_error_estimate=gsd_error_estimate, ignore_gsd=args.ignore_gsd, ignore_resolution=ignore_resolution, has_gcp=reconstruction.has_gcp()) / 100.0) # odm_orthophoto definitions kwargs = { 'bin': context.odm_modules_path, 'log': tree.odm_orthophoto_log, 'ortho': tree.odm_orthophoto_render, 'corners': tree.odm_orthophoto_corners, 'res': resolution, 'bands': '', 'verbose': verbose } models = [] if args.use_3dmesh: base_dir = tree.odm_texturing else: base_dir = tree.odm_25dtexturing model_file = tree.odm_textured_model_obj if reconstruction.multi_camera: for band in reconstruction.multi_camera: primary = band['name'] == get_primary_band_name( reconstruction.multi_camera, args.primary_band) subdir = "" if not primary: subdir = band['name'].lower() models.append(os.path.join(base_dir, subdir, model_file)) kwargs['bands'] = '-bands %s' % (','.join( [quote(b['name']) for b in reconstruction.multi_camera])) else: models.append(os.path.join(base_dir, model_file)) kwargs['models'] = ','.join(map(quote, models)) # run odm_orthophoto system.run( '{bin}/odm_orthophoto -inputFiles {models} ' '-logFile {log} -outputFile {ortho} -resolution {res} {verbose} ' '-outputCornerFile {corners} {bands}'.format(**kwargs)) # Create georeferenced GeoTiff geotiffcreated = False if reconstruction.is_georeferenced(): ulx = uly = lrx = lry = 0.0 with open(tree.odm_orthophoto_corners) as f: for lineNumber, line in enumerate(f): if lineNumber == 0: tokens = line.split(' ') if len(tokens) == 4: ulx = float(tokens[0]) + \ float(reconstruction.georef.utm_east_offset) lry = float(tokens[1]) + \ float(reconstruction.georef.utm_north_offset) lrx = float(tokens[2]) + \ float(reconstruction.georef.utm_east_offset) uly = float(tokens[3]) + \ float(reconstruction.georef.utm_north_offset) log.ODM_INFO('Creating GeoTIFF') orthophoto_vars = orthophoto.get_orthophoto_vars(args) kwargs = { 'ulx': ulx, 'uly': uly, 'lrx': lrx, 'lry': lry, 'vars': ' '.join([ '-co %s=%s' % (k, orthophoto_vars[k]) for k in orthophoto_vars ]), 'proj': reconstruction.georef.proj4(), 'input': tree.odm_orthophoto_render, 'output': tree.odm_orthophoto_tif, 'log': tree.odm_orthophoto_tif_log, 'max_memory': get_max_memory(), } system.run('gdal_translate -a_ullr {ulx} {uly} {lrx} {lry} ' '{vars} ' '-a_srs \"{proj}\" ' '--config GDAL_CACHEMAX {max_memory}% ' '--config GDAL_TIFF_INTERNAL_MASK YES ' '{input} {output} > {log}'.format(**kwargs)) bounds_file_path = os.path.join( tree.odm_georeferencing, 'odm_georeferenced_model.bounds.gpkg') # Cutline computation, before cropping # We want to use the full orthophoto, not the cropped one. if args.orthophoto_cutline: cutline_file = os.path.join(tree.odm_orthophoto, "cutline.gpkg") compute_cutline(tree.odm_orthophoto_tif, bounds_file_path, cutline_file, args.max_concurrency, tmpdir=os.path.join( tree.odm_orthophoto, "grass_cutline_tmpdir"), scale=0.25) orthophoto.compute_mask_raster( tree.odm_orthophoto_tif, cutline_file, os.path.join(tree.odm_orthophoto, "odm_orthophoto_cut.tif"), blend_distance=20, only_max_coords_feature=True) orthophoto.post_orthophoto_steps(args, bounds_file_path, tree.odm_orthophoto_tif, tree.orthophoto_tiles) # Generate feathered orthophoto also if args.orthophoto_cutline: orthophoto.feather_raster( tree.odm_orthophoto_tif, os.path.join(tree.odm_orthophoto, "odm_orthophoto_feathered.tif"), blend_distance=20) geotiffcreated = True if not geotiffcreated: if io.file_exists(tree.odm_orthophoto_render): pseudogeo.add_pseudo_georeferencing( tree.odm_orthophoto_render) log.ODM_INFO( "Renaming %s --> %s" % (tree.odm_orthophoto_render, tree.odm_orthophoto_tif)) os.rename(tree.odm_orthophoto_render, tree.odm_orthophoto_tif) else: log.ODM_WARNING( "Could not generate an orthophoto (it did not render)") else: log.ODM_WARNING('Found a valid orthophoto in: %s' % tree.odm_orthophoto_tif) if args.optimize_disk_space and io.file_exists( tree.odm_orthophoto_render): os.remove(tree.odm_orthophoto_render)